
Natural Language Processing To Assess Structure and
Complexity of System Requirements

Dr. Maximilian Vierlboeck 1 | Dr. Roshanak Nilchiani 1 | Dr. Mark Blackburn 1,2

Abstract — The development process of a system is shaped by numerous variables that influence its
progress and outcome. As a result, complexity can increase throughout the development
process, potentially leading to negative consequences, which makes the management of
complexity critical. Most development processes begin with the definition of needs and
requirements, and in this paper, the authors present a novel approach that enables the
automated extraction of structure from requirements specifications. The approach uses
Natural Language Processing to elicit three structural layers from a set of requirements,
which are subsequently analyzed using metrics to assess complexity. In a case study, the
approach is demonstrated using a set of 79 requirements, within which 246 individual
entities are identified. These entities and the requirements are structured and analyzed
using network density and spectral entropy. The metrics allow for interpretation and
insight generation, such as identifying an increase in the number of potentially
problematic loops. The approach achieved a detection and structural accuracy of over 98
percent in the given case study and is planned to be expanded with future cases.

Keywords— systems development, requirements engineering, systems structure, natural language
processing, complexity, quantification

1. INTRODUCTION

During the process of systems development, countless factors and variables must be considered. As a result, from
inception to the eventual roll-out of the system, complexity grows, which is further exacerbated by the increasing
demand for higher performance [1]. Complexity can lead to issues and even severe problems in the long term. As
projects grow in complexity, they also become more challenging, have higher failure rates, and are subject to cost
and schedule overruns. For instance, the increased system complexity and higher development effort in realizing
fixed-wing aircraft has been assessed by the RAND Corporation [2] with striking conclusions regarding cost increases
over time due to complexity. Such circumstances have also been shown for small-scale applications [3]. The worst-
case outcome is that system development projects fail to achieve their planned schedule and performance [4]. In
order to address these issues and risks, the ability to characterize, quantify, and subsequently effectively manage and
hedge complexity is crucial [5]. The urgency of this is further underlined by shrinking cycle times and the strong
correlation between system development and complexity [5].
Due to the aforementioned circumstances, managing complexity and its undesirable consequences for the systems
and development process is an acute issue. Yet, two general problems make addressing this issue difficult: (1) the
inability to effectively characterize, quantify, and manage complexity [5] and (2) the necessary balance of
performance, complexity, and development effort [6]. Sinha and de Weck highlight the timely necessity for
quantifiable and comprehensive complexity measurement frameworks [6] that allow for tracking and trade-off
management in the development and design process. Such quantifiable metrics to assess complexity eventually
enable the identification and hedging of undesirable aspects of the system and development process, which can be
leveraged to find advantageous options and even allow multi-objective optimization [7].

 Affiliations: 1 Stevens Institute of Technology 2 Systems Engineering Research Center (SERC)	 	

1

The complexity management described applies to the entire development process and should be considered from
the first steps onwards. Traditionally, most system development models begin with the definition of stakeholder
needs and subsequently requirements elicitation [8-11]. Thus, the consideration of complexity has to start at these
early steps to fully leverage the above-mentioned advantages. However, most complexity quantification approaches
and frameworks, as further demonstrated in the second section, rely on a sufficiently developed system architecture
or design elements of the system. Such assessments thus rely on a development process that has already progressed
into at least the preliminary design phase, which then only considers the effect of requirements indirectly. While
assessing and quantifying complexity based on a sufficiently developed system architecture and/or design is useful,
we argue that the impact of requirements complexity must not be ignored. Requirements introduce complexity to
the process as well, for instance by increasing effort or load, as described by various metrics [12, 13]. While
determining causal relationships and/or correlations between different complexity metrics can be challenging, these
metrics all contribute to the overall system and development complexity, as outlined by Salado and Nilchiani [14].
Additionally, it is important to note that while architectures can be identified early in the process, they evolve in
fidelity over time; in the early stages, they usually do not include enough connections and relationships to enable
quantifiable complexity analyses and comparisons.
To address the gap described above, this paper presents a novel approach to assess the structure and quantify the
complexity created during the requirement phase and the continued effects throughout the development. To enable
this approach and application, Natural Language Processing (NLP) is used to dissect and evaluate the requirement
body. The result of this evaluation is then assessed with quantification metrics. The presented assessment can be
used from the early development phases onward, which is demonstrated through a case study involving an
unmanned aerial vehicle requirements specification currently under research at the Systems Engineering Research
Center (SERC) [15].
It has to be noted that the focus of this paper and research is not the detection or causal definition of the
mechanisms that are the root of complexity. Since the development of a causal model for complexity for systems
development is a substantial research undertaking by itself, as also outlined by Sinha and de Weck [6], the presented
research focuses on the automated elicitation of structure from a requirements specification and a quantitative
analysis based on the results thereof. This foundation then enables the analysis of causality in future work.
The paper at hand is divided into the following six parts: Part 1 introduces the problem and research gap to be
addressed. Part 2 provides the background of the topic and a literature review to understand the current state of the
art. Based on the identified gap, Part 3 describes the developed approach, which is then applied to the case study in
Part 4, including a presentation of the achieved results. Part 5 interprets and discussed these results, and Part 6
concludes the paper.

2. BACKGROUND & LITERATURE

Since the approach presented in this paper consists of an NLP component and a complexity assessment component,
Part 2 is divided into two sections. The first section addresses the state of the art regarding NLP with a focus on
structural extraction from text sources in Requirements Engineering, whereas the second section summarizes
existing research on system and requirements complexity. This division facilitates the specific explanation of the
opportunities that exist in each field separately.

2.1. NLP for Requirements Engineering
Natural Language Processing for Requirements Engineering (NLP4RE) and related topics have been extensively
researched by computer science scholars and have also made their way into adjacent domains [16]. To survey and
summarize existing approaches and possibilities regarding the field and application of NLP to Requirements
Engineering in the context of systems engineering and development, the authors conducted a survey of 133 NLP tools
[17] to assess their usefulness for eliciting structure from a requirements specification. All tools were analyzed with a
set of criteria to allow for both quantitative and qualitative analysis.
The result of the review and survey was that no approach currently meets all the criteria necessary to elicit sufficient
structure for a subsequent assessment of complexity. The contenders that fulfilled most criteria only partially

2

targeted the extraction of structure and thus require further adaptation to be considered useful. Other approaches
and tools that did target the elicitation of structure primarily turned out to be not openly accessible as far as their
code basis is concerned, which makes them only conceptually useful and consequently requires reconstruction of
the actual tools.
Despite the lack of existing solutions, which led to the development of the approach described in Part 3, the four
publications most closely related to the presented work are discussed here to provide a better understanding of the
contribution of the presented research.
The first related research project by Ferrari, Gnesi, and Tolomei [18] used an algorithm called “Sliding Head-Tail
Component” (S-HTC) to cluster requirements based on two factors: lexical relation and contiguous order in the
document. The algorithm emulates the process of reading a requirements document with the inclusion of relations.
The authors claim that by applying the S-HTC, a hidden structure of the document can be elicited that can even be
refined with additional runs. Despite their ability to structure a document, the clustering within the approach does
not enable a specification-wide structure definition without consideration of the original setup of the document.
The second related publication was published by Hamza and Walker [19]. In their work, they outline their “Feature
and Feature Relationship Extraction” (FFRE) approach, which allows for the decomposition of a requirement set into
features and their respective structure. An algorithm takes into account semantic similarities to form connections
and ultimately yields a feature model. While such a model can be seen as a structure of the set, it is limited to the
features and thus leaves other connections out that are not useful for the feature model.
Third, Tahvili et al. [20] published an NLP approach that enables the functional dependency detection between
integration test cases. By analyzing internal communication between modules, the approach allows for the detection
of dependencies of requirements and test cases, respectively. These dependencies are then used to build a structure
of the respective requirements in addition to the modules. While this approach does elicit structure, it only links the
requirements to models and does not assess the structure inherent to the requirements.
Lastly, Arora and Zimmer outlined an approach using NLP to extract domain name models from natural language
requirements [21]. While their approach specifically targets the extraction of models and not structure, part of it
elicits connections from requirement statements that link subjects and objects sequentially, which aligns with the
presented approach. Although Arora and Zimmer used similar NLP tools, their structural extraction has to be
considered partial since it was not the main focus. Nevertheless, due to their connection to the work at hand, the
correctness achieved by Arora and Zimmer supports the results of the case study presented in Part 4.
All in all, the literature review mentioned above [17] and the presented related works do not address the structural
elicitation from textual requirements nor the complexity, which is what the presented approach provides. Due to the
multitude of existing complexity metrics, the next section provides an overview of the field.

2.2. Complexity and Metrics
The general literature regarding system complexity is characterized by many publications from different scholars.
With this diversity comes the fact that currently, there is no standardized model to characterize the complexity of a
system or network, for instance [22]. Furthermore, some scholars describe inherent problems and difficulties that
come with the nature of complexity, leading to inability to quantify or even manage the resulting dynamics [5, 6]. As
a result, when looking for complexity measures and metrics in a general sense, a multitude of options can be found
that are associated with various scientific fields [23]. The most popular and closely related ones are discussed below.
Please note that complexity in the context of this research, and specifically regarding requirements, is classified as
the identification of the attributes and characteristics of complex systems/constructs, and pertains to the concepts of
multi-dependency dynamics, uncertainty, and emergence, caused by the behavior and interaction of known
components [37-40]. This definition also aligns with the works cited earlier in this chapter.
One of the most, if not the most famous metric for complexity is Shannon’s entropy [24]. By using the probability of
a specific variable, the metric assesses the information content in the form of weighted averages. The metric was
used to measure complexity in a multitude of fields and applications and is still applied as a measure of graph
complexity [25]. Furthermore, Shannon’s metric has inspired the development of various other information-based
complexity metrics [26], which also include metrics such as Gell-Mann’s effective complexity [27, 28]. Other metrics

3

that have gained popularity over time are McCabe’s Cyclomatic Complexity [12] and Halstead’s approach [29], both
for software code.
Since the output of the NLP, as shown in Part 3 and 4, is a structural network representation in different forms, graph
theoretical and spectral metrics for complexity are applicable as well. Looking into these metrics shows that
approaches such as Gutman’s graph energy [30, 31], which was developed based on chemistry approaches from the
1940s, can quantify complexity based on the spectrum (set of eigenvalues) of a graph and its matrix. More recently,
Sinha and de Weck [1] developed a comprehensive structural complexity metric that uses graph energy/entropy to
assess topological aspects of a system. Similar approaches with a different basis have been shown by Nikiforov [32]
using singular values instead. Also, Wu et al. proposed a metric that uses natural connectivity [33]. Many of these
approaches also consider and incorporate the use of network/graph density [33, 34]. More recently, Lei, Liu, and Wei
[22] proposed an approach that claims to resolve the network scaling dependence of existing approaches by
combining structural entropy with the absolute density of a graph.
Looking specifically for requirements complexity, Salado and Nilchiani’s [14] concept of problem complexity
incorporates the conflicts and physical properties within requirements to add a factor to other complexity
dimensions. Also, Sharma and Kushwaha [35] proposed a metric including NLP for software requirements that relies
on classification and structure inference based on past projects in the context of knowledge-based NLP. Lastly,
Purawinata, Ariadi, and Abbas [36] recently proposed a neural network-based algorithm to predict software
complexity by calculating requirements complexity based on the number of categories.
Overall, the literature regarding complexity of requirements shows that current approaches either rely on manual
processing or pre-existing data for training. Thus, none of these approaches can be considered fully automated due
to these drawbacks. A similar conclusion was also found by the authors regarding NLP4RE in general [17]. Therefore,
the goal of the presented research was the development of an automated requirements processing approach that
elicits structure and allows for quantitative complexity assessment.

3. METHODOLOGY AND SETUP

As mentioned earlier, the research presented enables the assessment of the complexity that is inherent to and
introduced by the requirements. One of the limitations of the approaches discussed in the previous section is that
they depend on an existing system structure for their implementation, which requirements do not necessarily
contain. While some requirements specifications do contain a hierarchy or levels, their structure does not have the
same kind of lateral and vertical connections as the system itself, and therefore, system structure cannot be inferred.
Thus, for the presented research, an NLP framework was designed that allows for the identification and organization
of all entities within a requirements specification. By applying the NLP process presented in Figure 1, two types of
structure can be deduced from a set of requirements (in addition to a hierarchy structure, if available): (1) the
structure based on the terms and entities in the requirement text, and (2) the connections of the requirements based
on the entities within them. All of the outlined steps were achieved by using the spaCy [41] library, which is an open-
source NLP library that provides the necessary functions shown below and described on the next page.

4

Figure 1 - NLP Flowchart and Process

As depicted, in a first step, an imported requirement text is split into the different requirements. Depending on the
input, this can be based on a table or directly on the content. This splitting yields the Requirement List. With this
list, the NLP is used to identify the tokens in each requirement, which yields a Token List. Based on the Token List,
the parts of speech can be tagged, which identifies the different roles/categories of the text in accordance with
Universal POS tags [42]. This tagging yields the Requirement Part-of-Speech list for each requirement and tokens
therein. Adding to the POS tagging, chunking is applied to reveal the noun chunks within the sentences, which
results in a Chunk List. With the chunks and parts of speech, their dependencies are analyzed, which produces the
role that each token plays in a sentence as a Dependency overview. A pattern matcher is used to identify structural
patterns, such as lists and concatenations between the noun chunks, which then allows for the linking of the
entities that are found within the noun chunks. Lastly, this entity linking then can be combined to build the
structure of the requirements for the structural linking. The last step connects the entities based on their
relationships in the text, such as the nouns with the objects, and concatenations/lists.
To provide an example, the following requirement is divided into the entities listed below.
“The landing gear shall be designed for a service life equal to that of the air vehicle airframe structure.”:

(A) landing gear
(B) service life
(C) air vehicle airframe structure

Herein, the following connections indicate the structure: (A) is connected to (B) and (B) is connected to (C).
The result of the process described above is a network of terms/entities that are connected based on their sentence
structure and text relationships. In addition, since the different entities are part of individual requirements, these
requirements can also be linked based on their content, which enables the creation of another dimension with
additional insights. Thus, overall, three different layers and structural aspects of the requirements can be elicited, as
shown in Figure 2: the hierarchy of the requirements (if existent), the structural network of the requirements based
on the contained entities, and the structural network of the entities separately. The networks were managed using
the open-source library NetworkX [43], which also enables the computation of the metrics in the next paragraph.
With the results produced by the NLP, analyses can b fe performed for each of the layers. To represent the potential
of the created approach and provide some useful initial insights for the application, the metric of network density
was chosen to be demonstrated for the Requirement Structure, and the spectral entropy [30, 31] was used to
analyze the NLP Structure, which represents the entity connections. These metrics can be used to quantify
complexity overall and have been used by the authors and researchers cited in the previous chapter as well.

Dependencies

Chunk List

Text Corpus

Tokenization

Chunking

Dep. Parsing

Matching

Splitting

POS Tagging

Entity Linking

Structural Linking

Req. List

Req. POS

Ident. Patterns

Linked Entities

Output

Token Lists

=

=

=

=

=

=

=

5

Figure 2 - Extracted Dimensions and Relations

4. CASE STUDY, RESULTS, AND VALIDITY

With the process and possibilities outlined above, a case study was conducted to address two main objectives: (1) the
validation and proof of concept for the NLP approach, and (2) the application and test of different metrics. To
achieve this, a case study from the Systems Engineering Research Center (SERC) was used. The case study was based
on an ongoing model-based systems engineering (MBSE) research project, which uses an unmanned aircraft system
(UAS) as an experimental subject. The project includes multiple efforts such as physical factors and cost modeling
[15]. As part of these efforts, the project includes a set of requirements for the UAS landing gear in text form, which
were used as a foundation for the presented study.
For an initial assessment of the requirements, the developed NLP approach was applied to detect requirements that
contain potential spelling errors, incorrect wordings, and term ambiguities by reviewing the results of the identified
entities/terms and checking them for consistency and errors. For instance, if the NLP algorithm detected two
different forms for the same entity, such as “airplane” and “plane,” one of the two could be replaced with the other
to ensure consistency and that the entities would be identified as the same network nodes. Another example were
appearances where terms were used as acronyms in some requirements and spelled out in others. Thus, using the
detection of the NLP algorithm allowed for the identification and subsequent removal of clarity issues. This initial
application resulted in a specification that included 79 individual requirements in tabular form. While these
requirements were written with standards such as ISO 9001 in mind, they were not all in accordance with the
standard. The robustness/error handling of the approach was also tested in the case study.
The 79 requirements were processed according to the steps shown in Figure 1. The result was a catalog of 389
identified entities within the 79 requirements that contained 246 unique individual entities. With the structural
linking then, the connections between those terms were identified, which yielded the network of entities that the
requirement structure is derived from. Figure 3 shows an excerpt of the adjacency matrix of the entities, with a
legend provided below.

 A B C D E F G H I J …
 A 0 1 0 0 0 0 0 0 0 0 …
 B 1 0 1 0 0 0 0 0 0 0 …
 C 0 1 0 0 0 0 0 0 0 0 …
 D 0 0 0 0 1 0 0 0 0 0 …
 E 0 0 0 1 0 1 0 0 0 0 …
 F 0 0 0 0 1 0 1 0 0 0 …
 G 0 0 0 0 0 1 0 1 0 0 …
 H 0 0 0 0 0 0 1 0 0 0 …
 I 0 0 0 0 0 0 0 0 0 1 …
 J 0 0 0 0 0 0 0 0 1 0 …
 … … … … … … … … … … … …

A = landing gear structure
B = service life
C = air vehicle airframe structure
D = reversal
E = landing gear command
F = actuation
G = landing gear
H = last position
I = alternate extension system
J = capability

Figure 3 - Structural Entities Adjacency Matrix

6

1

NLP
NLP Structure

Requirement Structure

Requirement Hierarchy

Process

REQs

Major Improvements to NLP Algorithm ⇨ More Detail/Insights

6

The full matrix in Figure 3 has a size of 246 by 246 since it includes all the unique individual entities and their
connections. Furthermore, a 79 by 79 adjacency matrix of the individual requirements was created to represent the
network of the requirements, rather than the entities they contain. Based on these adjacency matrices, the
structures can also be represented as an interactive network, which was realized using the pyvis library [44]. The
result is a fully interactive network that allows for the assessment of connections and constellations, as shown in
Figure 4.

Figure 4 - Requirements Structure Network

With the produced results, the actual analysis was conducted to apply the metrics to the output. Thus, the density of
the requirements network was calculated, and the entropy of the term/entity network, since these two metrics are
applicable and, as shown in Section 2.2, form a good foundation for the development of further metrics. Since a
single calculation of the two factors as a snapshot of the final state would provide only a limited view, their evolution
through the requirements definition process was analyzed. The requirements specification was processed
sequentially, and the two metrics were recorded for each additional requirement, allowing the progression over time
to be observed.
The two charts shown in Figure 5 and Figure 6 illustrate the outputs discussed in Part 5.

Figure 5 - Requirement Network Density - Progressive	 Figure 6 - Entity Network Entropy - Cumulative

N
et

w
or

k
De

ns
ity

0.0

0.2

0.4

0.6

0.8

1.0

Number of Requirements
1 14 27 40 53 66 79

Minimum Density
Actual Density

C
um

ul
at

iv
e

En
tro

py

0

75

150

225

300

Number of Requirements
1 14 27 40 53 66 79

Entropy

7

Lastly, to test the validity of the results regarding the NLP output that was used to produce the calculated metrics
above, a blind test was conducted to assess the correctness and validity of the results similar to Aurora et al. as well
as Falessi and Layman [21, 45]. A specific metric was established to evaluate the quality of the results. To guide this
evaluation, the accuracy and quality measures detailed by Derczynski [46], as well as Nakache, Metais, and Timsit
[47], were used. Consequently, the precision value was calculated as a metric to measure correctness. Precision is the
ratio of all true positives to the sum of all true positives and false positives. For the blind test, a human participant
was given the requirements specification for the presented case and instructed to manually apply the rules and
elicitation approach. The list of entities and the requirements network structure produced by the human participant
were then cross-checked against the NLP approach’s output, allowing for the precision to be calculated using the
human results as a benchmark. The developed NLP approach was 99.74 percent correct regarding the identification
of the entities within the requirements, which means that 388 out of the 389 entities were correctly identified.
Additionally, the structure produced by the NLP approach was 98.71 percent correct, which equates to 310 out of the
314 non-duplicate connections in the network being correctly linked according to the defined rules and sequence of
the algorithm.

5. DISCUSSION & INTERPRETATION

The results produced by the developed approach provide a range of interpretations and insights, even without a
compound metric such as [1]. Thus, the paragraphs below will discuss the obtained results and how they can be
analyzed, before discussing the current limitations and potential improvement points for the approach.

First, looking at Figure 5—the density measure of the requirements network—shows that the density trends
downwards, which is to be expected in a growing network that is not fragmented and significantly disconnected. Yet,
in contrast to the minimum density in the same graph, the actual density shows that it veers further away from the
possible minimum. The minimum was calculated with the following formula:

	 where is the number of nodes	 (1)

The formula above expresses the minimum number of connections necessary in a network (n-1) to connect all nodes
with at least one edge, without creating fragments. This also implies that no loops are created, since a loop,
regardless of its size, would necessitate an additional edge, and the resulting edge count would exceed the minimum
density.
The progress of the density in Figure 5 shows that over time, the increasing distance from the minimum density
means that more and more loops are introduced, which can eventually also be clearly seen in the visual
representation in Figure 4. These loops are potentially problematic, as they can turn into reinforcing loops (negative
as well as positive), which can make satisfaction of a requirement and change management [48] difficult. While the
opposite is possible—the creation of balancing loops—the mere existence of loops increases tracking/tracing effort.
In addition to the issues created by loops, the growth or distance from the minimum density increases the number of
connections overall, and thus the edges to track. In the case of humans and even machines working with the
resulting structure, we argue that this increase leads to higher effort and cognitive difficulties that could negatively
affect the development of the system in various ways, which metrics such as McCabe [12] corroborate. Validating
these circumstances is currently being done in a follow-up case study and is planned to be published soon.
Lastly, the density graph also shows different segments with stronger and less strong implications. For instance, the
requirements after number 31 increase the density disproportionately, which means that in this section, an unusually
high number of connections is added to the system with respectively fewer nodes. Such insights can point to
requirements of interest that merit scrutiny and could be assessed by a human in the loop regarding their role to
either lessen their impact or consider their position.

dmin =
(n − 1)

(n ⋅ (n − 1))
2

n

8

Regarding Figure 6 and the entropy within the entity network, we can see a steadily increasing trend, which also was
to be expected due to the growing size of the network throughout the requirements specification. Yet, similar
insights to those gained from the density above can be deduced: the impact each requirement has on the overall
entropy is not uniform. Some requirements introduce higher amounts of entropy than others, potentially due to a
higher number of added nodes or connections. To investigate this, the number of entities per requirement was
plotted versus the entropy impact of the respective requirement. The impact was obtained by removing the
respective individual requirement and recalculating the entropy difference of the remaining structure. The results
are shown in Figure 7 below.

Figure 7 - Entropy Impact vs. Added Entity Number

Calculating the R and R² value of the scatter in Figure 7 reveals a strong correlation (R=0.75) between the number of
entities added by a requirement and the entropy impact it has. The R² value is computed to be 0.5565. Thus, the
number of entities identified in a requirement does correlate with the entropy it introduces, which allows for the
argument that shorter requirements with fewer factors and entities add less entropy on a per requirement basis and
are easier to process and understand.
Despite the insightful possibilities and analyses enabled by the metrics above, certain drawbacks have to be
mentioned, which also motivated the future work described in the conclusion section. First and foremost, the
metrics presented in this case study show a dependence on the overall size of the network and, consequently, the
size of the requirements specification. Such issues have been noted by other researchers [22] who attempted to
decouple their metrics from the size and scope of the network, but in doing so, introduced other potential
drawbacks. Therefore, this issue is considered critically important for the future case studies currently underway for
our approach.
Second, the presented assessment has some dependence on the sequence of the requirements catalog/specification.
While the assumption can be made that the sequence of the requirements from beginning to end is of importance,
this significance diminishes as the specification grows larger and once modularization or segmentation of specific
requirement aspects, such as functional and non-functional requirements, for example, are reached. As a result, for
these cases, the inclusion and reliance on sequence must be reassessed. This also applies to the same entities
possibly detected in different modules, where a connection might not be relevant or accurate.
Yet, despite these considerations, the approach presented offers valuable insights and will be further improved.

Lastly, to discuss the limits of the current state of the research, three limitations/scope constraints should be
mentioned. First, due to the researcher’s knowledge of the case study, the created approach and its included rule set
may be subject to overfitting to the specifics of the study. The implemented rules address potential problems and, for
instance, significant deviations from standards, like the mentioned ISO 9001. However, this potential overfitting and
associated restrictions do not constitute a hard limit of the developed approach, since the rules within the algorithm
can be adjusted and amended flexibly. Therefore, we are confident that the developed approach can be transferred

En
tro

py
 D

iff
er

en
ce

 /
Im

pa
ct

0

2

4

6

8

10

12

Number of Entities Added
0 1 2 3 4 5 6 7 8 9 10

9

to a variety of cases and problems without loss of functionality, provided that emerging issues and errors are
addressed iteratively. This also means that other standards or semi-structured content are possible, albeit not
functional yet, which is also subject of the next case study.
Second, existing limitations of NLP have to be mentioned. For instance, the current iteration of the algorithm does
not include any analysis and treats different entities necessarily as unique. This could potentially lead to issues
stemming from working ambiguities and variances. For instance, looking at Figure 3, we see that there are different
variations that could all be interpreted as “landing gear,” yet they are separated due to their different terminology.
While this might be correct from a semantic perspective, general correctness cannot be assumed overall, and thus,
such unification issues have to be considered moving forward. One possible solution would be a human-in-the-loop
approach that allows for on-the-fly correction and adjustment of possible synonyms. The same issue applies even
more to pronouns such as “that,” for instance, which need to be replaced or explained to fulfill their correct role as a
substitute.
Finally, the meaningfulness of the presented metrics has to be discussed. Since the analysis addresses one case study,
the results cannot easily be transferred or compared to other cases without calibration. Due to the nature of
language, deviations from standards and inherent randomness within text can have different implications for
requirement sets and, consequently, for the metrics. These can and are planned to be addressed with a compound
metric that allows for calibration.
The developed approach, with the correctness and validity numbers above, demonstrates its functionality and
potential. Additionally, the application has revealed further benefits, such as the error detection possibilities and
improvement recommendations for the requirements. While these benefits were not the main focus of approach
development, they reveal an additional and arguably different direction for adaptation. Overall, given the successful
application, expansion, and adaptation opportunities, we argue that there is great potential in this research.

6. CONCLUSION

The paper at hand presented a new automated system analysis approach based on requirements specifications in
natural language text form. By using a sequence of NLP tools, an algorithm was developed that extracts three
structural layers from a requirements document: the hierarchy structure of the requirements, the structure of the
requirements based on their content, and the structure of the specific terms/entities within the requirements. With
these results, the complexity of the requirement set can be assessed on each layer using different metrics. For the
presented case study—an UAS—the developed approach achieved a correctness of 99.74 percent for the entities
within the requirements, and the correctness of the produced structure was 98.71 percent.
With the obtained result, the case study was evaluated regarding the density of the requirements network and the
spectral entropy of the entity network. The analysis showed an increasing trend for both metrics, indicating a
growing complexity of the requirements throughout the specification process and an increasing potential for
disadvantageous feedback loops in the network. However, the current metrics show a dependency on the size of the
network, the size of the requirements specification, and the number of terms introduced by each requirement. The
entropy impact of each requirement was correlated with the number of contained entities with an R-value of 0.75.
Current limitations of the approach are a potential overfitting to the presented case study. However, this can be
mitigated by the flexible and adjustable rule set within the algorithm, which allows for transfer to other cases.
Additionally, the use of NLP introduces certain limitations, such as potentially incorrect semantic links and different
scaling challenges, which are to be addressed with future iterations and case studies.
Overall, the developed approach poses a new and useful tool to address the need for quantifiable complexity
assessment, as outlined in the introduction. By making complexity measurable and quantifiable based on the
requirements, the approach enables analyses that can be used to prevent unnoticed increases or jumps in
complexity (complexity creep), disproportionate complexity levels compared to other and/or previous projects, and
clusters that contribute significantly and excessively to the overall complexity. By monitoring and analyzing such
metrics, projects can be better controlled, helping to reduce risk by providing a way to identify and address potential
problems early before the consequences become visible and possibly irrevocable. Early identification and
assessment are especially crucial for requirements, as they significantly affect nearly all other development phases.

10

Additionally, complexity—being characterized by emergent behavior—can also be quantified with the presented
approach, which allows for potential minimization and or optimization as well.
Through the quantification and measurements enabled by the approach, the complexity introduced by requirements
adds another factor to the sources of complexity in systems development, as outlined by Salado and Nilchiani [14].
Requirements complexity thus is an additional aspect of the overall development complexity sum and must be
considered alongside other factors to provide a holistic overview for systems development. Furthermore, since
requirements complexity is not always directly related to system components and parts, it offers an evaluation of
complexity on a meta level, which also relates to human effort and project management factors.
In line with these benefits and opportunities, the authors are currently working on a follow-up case study to not only
transfer the approach but also develop a compound metric that addresses the limitations and concerns of those
presented in this paper. Furthermore, in preparation for future case studies, the approach has also been applied to a
less structured requirement set that contained different input formats and partial tables. This set is publicly available
as part of [49]. In initial tests, the approach demonstrated great potential for accuracy, and an expanded set of
correctness metrics is currently being developed as well.

BIBLIOGRAPHY

[1]	 K. Sinha and O. L. d. Weck, "A network-based structural complexity metric for engineered complex systems," in 2013 IEEE
International Systems Conference (SysCon), 15-18 April 2013 2013, pp. 426-430, doi: 10.1109/SysCon.2013.6549917.

[2]	 M. V. Arena, O. Younossi, K. Brancato, I. Blickstein, and C. A. Grammich, Why Has the Cost of Fixed-Wing Aircraft Risen? A Macroscopic
Examination of the Trends in U.S. Military Aircraft Costs over the Past Several Decades. Santa Monica, CA: RAND Corporation, 2008.

[3]	 D. Nagar, A. Furman, and G. Nitschke, "The Cost of Complexity in Robot Bodies," in 2019 IEEE Congress on Evolutionary Computation
(CEC), 10-13 June 2019 2019, pp. 2713-2720, doi: 10.1109/CEC.2019.8790084.

[4]	 H. A. Bashir and V. Thomson, "Estimating Design Complexity," Journal of Engineering Design, vol. 10, no. 3, pp. 247-257, 1999/09/01
1999, doi: 10.1080/095448299261317.

[5]	 H. A. Bashir and V. Thomson, "Models for estimating design effort and time," Design Studies, vol. 22, no. 2, pp. 141-155, 2001/03/01/
2001, doi: 10.1016/S0142-694X(00)00014-4.

[6]	 K. Sinha and O. L. de Weck, "Empirical Validation of Structural Complexity Metric and Complexity Management for Engineering
Systems," Systems Engineering, vol. 19, no. 3, pp. 193-206, 2016, doi: https://doi.org/10.1002/sys.21356.

[7]	 K. Miettinen, Nonlinear Multiobjective Optimization. Boston, MA: Springer US, 1998.
[8]	 W. W. Royce, "Managing the Development of Large Software Systems," presented at the IEEE WESCON, Los Angeles, CA, August 25-28,

1970.
[9]	 B. W. Boehm, "Guidelines for Verifying and Validating Software Requirements and Design Specifications," presented at the Euro IFIP 79,

1979.
[10]	 B. W. Boehm, Software Engineering Economics. Englewood Cliffs, NJ: Prentice Hall, 1981.
[11]	 R. G. Cooper, "Stage-gate systems: A new tool for managing new products," Business Horizons, vol. 33, no. 3, pp. 44-54, 1990/05/01/

1990, doi: 10.1016/0007-6813(90)90040-I.
[12]	 T. J. McCabe, "A Complexity Measure," IEEE Transactions on Software Engineering, vol. SE-2, no. 4, pp. 308-320, 1976, doi: 10.1109/

TSE.1976.233837.
[13]	 M. H. Halstead, Elements of Software Science (Operating and programming systems series). Elsevier Science Inc., 1977.
[14]	 A. Salado and R. Nilchiani, "The Concept of Problem Complexity," Procedia Computer Science, vol. 28, pp. 539-546, 2014/01/01/ 2014,

doi: 10.1016/j.procs.2014.03.066.
[15]	 M. R. Blackburn, T. McDermott, B. Kruse, J. Dzielski, and T. Hagedorn, "Digital Engineering Measures Correlated to Digital Engineering

Lessons Learned from Systems Engineering Transformation Pilot," INSIGHT, vol. 25, no. 1, pp. 61-64, 2022, doi: https://doi.org/10.1002/
inst.12375.

[16]	 L. Zhao et al., "Natural Language Processing for Requirements Engineering: A Systematic Mapping Study," ACM Comput. Surv., vol. 54,
no. 3, p. Article 55, 2021, doi: 10.1145/3444689.

[17]	 M. Vierlboeck, C. Lipizzi, and R. Nilchiani, "Natural Language in Requirements Engineering for Structure Inference--An Integrative
Review," arXiv preprint arXiv:2202.05065, 2022.

[18]	 A. Ferrari, S. Gnesi, and G. Tolomei, "Using Clustering to Improve the Structure of Natural Language Requirements Documents," Berlin,
Heidelberg, 2013: Springer Berlin Heidelberg, in Requirements Engineering: Foundation for Software Quality, pp. 34-49.

[19]	 M. Hamza and R. J. Walker, "Recommending Features and Feature Relationships from Requirements Documents for Software Product
Lines," in 2015 IEEE/ACM 4th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering, 17-17 May
2015 2015, pp. 25-31, doi: 10.1109/RAISE.2015.12.

[20]	S. Tahvili et al., "Functional Dependency Detection for Integration Test Cases," in 2018 IEEE International Conference on Software
Quality, Reliability and Security Companion (QRS-C), 16-20 July 2018 2018, pp. 207-214, doi: 10.1109/QRS-C.2018.00047.

11

[21]	 C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, "Extracting domain models from natural-language requirements: approach and
industrial evaluation," presented at the Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engineering
Languages and Systems, Saint-malo, France, 2016.

[22]	 M. Lei, L. Liu, and D. Wei, "An Improved Method for Measuring the Complexity in Complex Networks Based on Structure Entropy,"
IEEE Access, vol. 7, pp. 159190-159198, 2019, doi: 10.1109/ACCESS.2019.2950691.

[23]	 M. Vierlboeck and R. R. Nilchiani, "Requirement Engineering in the Age of System and Product Complexity – A Literature Review," in
2021 IEEE International Symposium on Systems Engineering (ISSE), 13 Sept.-13 Oct. 2021 2021, pp. 1-8, doi: 10.1109/
ISSE51541.2021.9582439.

[24]	 C. E. Shannon, "A mathematical theory of communication," The Bell System Technical Journal, vol. 27, no. 3, pp. 379-423, 1948, doi:
10.1002/j.1538-7305.1948.tb01338.x.

[25]	 S. A. Akundi, Information entropy measures applied to hierarchial complex technical and soci-technical systems. The University of
Texas at El Paso, TX, 2016.

[26]	 J. Fischi and R. Nichiani, "Complexity Based Risk Evaluation in Engineered Systems," Procedia Computer Science, vol. 44, pp. 31-41,
2015/01/01/ 2015, doi: 10.1016/j.procs.2015.03.044.

[27]	 M. Gell-Mann, "What is complexity? Remarks on simplicity and complexity by the Nobel Prize-winning author of The Quark and the
Jaguar," Complexity, vol. 1, no. 1, pp. 16-19, 1995, doi: 10.1002/cplx.6130010105.

[28]	 M. Gell-Mann and S. Lloyd, "Information measures, effective complexity, and total information," Complexity, vol. 2, no. 1, pp. 44-52,
1996, doi: 10.1002/(SICI)1099-0526(199609/10)2:1<44::AID-CPLX10>3.0.CO;2-X.

[29]	 M. H. Halstead, Elements of Software Science (Operating and Programming Systems Series). Elsevier, 1977.
[30]	I. Gutman and B. Zhou, "Laplacian energy of a graph," Linear Algebra and its Applications, vol. 414, no. 1, pp. 29-37, 2006/04/01/ 2006,

doi: 10.1016/j.laa.2005.09.008.
[31]	 I. Gutman, "Hyperenergetic and hypoenergetic graphs," Selected Topics on Applications of Graph Spectra, Math. Inst., Belgrade, 2011.
[32]	 V. Nikiforov, "The energy of graphs and matrices," Journal of Mathematical Analysis and Applications, vol. 326, no. 2, pp. 1472-1475,

2007/02/15/ 2007, doi: 10.1016/j.jmaa.2006.03.072.
[33]	 W. Jun, M. Barahona, T. Yue-Jin, and D. Hong-Zhong, "Natural Connectivity of Complex Networks," Chinese Physics Letters, vol. 27, no.

7, p. 078902, 2010/07 2010, doi: 10.1088/0256-307x/27/7/078902.
[34]	 K. Sinha, "Structural Complexity and its Implications for Design of Cyber-Physical Systems," Doctor of Philosophy, Engineering Systems

Division, Massachusetts Institute of Technology, 2014.
[35]	 A. Sharma and D. S. Kushwaha, "Natural language based component extraction from requirement engineering document and its

complexity analysis," SIGSOFT Softw. Eng. Notes, vol. 36, no. 1, pp. 1–14, 2011, doi: 10.1145/1921532.1921547.
[36]	 W. M. Purawinata, F. L. Gaol, A. Nugroho, and B. S. Abbas, "The prediction of software complexity based on complexity requirement

using artificial neural network," in 2017 IEEE International Conference on Cybernetics and Computational Intelligence
(CyberneticsCom), 20-22 Nov. 2017 2017, pp. 73-78, doi: 10.1109/CYBERNETICSCOM.2017.8311687.

[37]	 S. E. Phelan, "What Is Complexity Science, Really?," Emergence, vol. 3, no. 1, pp. 120-136, 2001/04/01 2001, doi: 10.1207/
S15327000EM0301_08.

[38]	 S. H. Strogatz, SYNC: the emerging science of spontaneous order. New York, NY: Hyperion, 2004.
[39]	 J. K. DeRosa, A. M. Grisogono, A. J. Ryan, and D. O. Norman, "A Research Agenda for the Engineering of Complex Systems," in 2008 2nd

Annual IEEE Systems Conference, 7-10 April 2008 2008, pp. 1-8, doi: 10.1109/SYSTEMS.2008.4518982.
[40]	J. Cotler, N. Hunter-Jones, J. Liu, and B. Yoshida, "Chaos, complexity, and random matrices," Journal of High Energy Physics, vol. 2017,

no. 11, p. 48, 2017/11/09 2017, doi: 10.1007/JHEP11(2017)048.
[41]	 "spaCy." https://spacy.io (accessed June 8, 2022).
[42]	 "Universal POS tags." Universal Dependencies. https://universaldependencies.org/u/pos/ (accessed September 1, 2022).
[43]	 "NetworkX." https://networkx.org (accessed June 3, 2024).
[44]	 "pyvis." https://pyvis.readthedocs.io/en/latest/ (accessed June 8, 2022).
[45]	 D. Falessi and L. Layman, "Automated classification of NASA anomalies using natural language processing techniques," in 2013 IEEE

International Symposium on Software Reliability Engineering Workshops (ISSREW), 4-7 Nov. 2013 2013, pp. 5-6, doi: 10.1109/
ISSREW.2013.6688849.

[46]	 L. Derczynski, "Complementarity, F-score, and NLP Evaluation," Portorož, Slovenia, May 2016: European Language Resources
Association (ELRA), in Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), pp.
261-266. [Online]. Available: https://aclanthology.org/L16-1040. [Online]. Available: https://aclanthology.org/L16-1040

[47]	 D. Nakache, E. Metais, and J. F. Timsit, "Evaluation and NLP," Berlin, Heidelberg, 2005: Springer Berlin Heidelberg, in Database and
Expert Systems Applications, pp. 626-632.

[48]	 U. Lindemann and R. Reichwald, Integriertes Änderungsmanagement. Berlin Heidelberg, Germany: Springer-Verlag (in German), 1998.
[49]	 "ARCHITECTING SPACECRAFT WITH SYSML." http://sysml-models.com/spacecraft/models.html (accessed September 1, 2022).

12

