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Abstract — The development process of a system is shaped by numerous variables that influence its 
progress and outcome. As a result, complexity can increase throughout the development 
process, potentially leading to negative consequences, which makes the management of 
complexity critical. Most development processes begin with the definition of needs and 
requirements, and in this paper, the authors present a novel approach that enables the 
automated extraction of structure from requirements specifications. The approach uses 
Natural Language Processing to elicit three structural layers from a set of requirements, 
which are subsequently analyzed using metrics to assess complexity. In a case study, the 
approach is demonstrated using a set of 79 requirements, within which 246 individual 
entities are identified. These entities and the requirements are structured and analyzed 
using network density and spectral entropy. The metrics allow for interpretation and 
insight generation, such as identifying an increase in the number of potentially 
problematic loops. The approach achieved a detection and structural accuracy of over 98 
percent in the given case study and is planned to be expanded with future cases.

Keywords— systems development, requirements engineering, systems structure, natural language 
processing, complexity, quantification

1. INTRODUCTION  

During the process of systems development, countless factors and variables must be considered. As a result, from 
inception to the eventual roll-out of the system, complexity grows, which is further exacerbated by the increasing 
demand for higher performance [1]. Complexity can lead to issues and even severe problems in the long term. As 
projects grow in complexity, they also become more challenging, have higher failure rates, and are subject to cost 
and schedule overruns. For instance, the increased system complexity and higher development effort in realizing 
fixed-wing aircraft has been assessed by the RAND Corporation [2] with striking conclusions regarding cost increases 
over time due to complexity. Such circumstances have also been shown for small-scale applications [3]. The worst-
case outcome is that system development projects fail to achieve their planned schedule and performance [4]. In 
order to address these issues and risks, the ability to characterize, quantify, and subsequently effectively manage and 
hedge complexity is crucial [5]. The urgency of this is further underlined by shrinking cycle times and the strong 
correlation between system development and complexity [5]. 
Due to the aforementioned circumstances, managing complexity and its undesirable consequences for the systems 
and development process is an acute issue. Yet, two general problems make addressing this issue difficult: (1) the 
inability to effectively characterize, quantify, and manage complexity [5] and (2) the necessary balance of 
performance, complexity, and development effort [6]. Sinha and de Weck highlight the timely necessity for 
quantifiable and comprehensive complexity measurement frameworks [6] that allow for tracking and trade-off 
management in the development and design process. Such quantifiable metrics to assess complexity eventually 
enable the identification and hedging of undesirable aspects of the system and development process, which can be 
leveraged to find advantageous options and even allow multi-objective optimization [7]. 
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The complexity management described applies to the entire development process and should be considered from 
the first steps onwards. Traditionally, most system development models begin with the definition of stakeholder 
needs and subsequently requirements elicitation [8-11]. Thus, the consideration of complexity has to start at these 
early steps to fully leverage the above-mentioned advantages. However, most complexity quantification approaches 
and frameworks, as further demonstrated in the second section, rely on a sufficiently developed system architecture 
or design elements of the system. Such assessments thus rely on a development process that has already progressed 
into at least the preliminary design phase, which then only considers the effect of requirements indirectly. While 
assessing and quantifying complexity based on a sufficiently developed system architecture and/or design is useful, 
we argue that the impact of requirements complexity must not be ignored. Requirements introduce complexity to 
the process as well, for instance by increasing effort or load, as described by various metrics [12, 13]. While 
determining causal relationships and/or correlations between different complexity metrics can be challenging, these 
metrics all contribute to the overall system and development complexity, as outlined by Salado and Nilchiani [14]. 
Additionally, it is important to note that while architectures can be identified early in the process, they evolve in 
fidelity over time; in the early stages, they usually do not include enough connections and relationships to enable 
quantifiable complexity analyses and comparisons. 
To address the gap described above, this paper presents a novel approach to assess the structure and quantify the 
complexity created during the requirement phase and the continued effects throughout the development. To enable 
this approach and application, Natural Language Processing (NLP) is used to dissect and evaluate the requirement 
body. The result of this evaluation is then assessed with quantification metrics. The presented assessment can be 
used from the early development phases onward, which is demonstrated through a case study involving an 
unmanned aerial vehicle requirements specification currently under research at the Systems Engineering Research 
Center (SERC) [15]. 
It has to be noted that the focus of this paper and research is not the detection or causal definition of the 
mechanisms that are the root of complexity. Since the development of a causal model for complexity for systems 
development is a substantial research undertaking by itself, as also outlined by Sinha and de Weck [6], the presented 
research focuses on the automated elicitation of structure from a requirements specification and a quantitative 
analysis based on the results thereof. This foundation then enables the analysis of causality in future work. 
The paper at hand is divided into the following six parts: Part 1 introduces the problem and research gap to be 
addressed. Part 2 provides the background of the topic and a literature review to understand the current state of the 
art. Based on the identified gap, Part 3 describes the developed approach, which is then applied to the case study in 
Part 4, including a presentation of the achieved results. Part 5 interprets and discussed these results, and Part 6 
concludes the paper. 

2. BACKGROUND & LITERATURE 

Since the approach presented in this paper consists of an NLP component and a complexity assessment component, 
Part 2 is divided into two sections. The first section addresses the state of the art regarding NLP with a focus on 
structural extraction from text sources in Requirements Engineering, whereas the second section summarizes 
existing research on system and requirements complexity. This division facilitates the specific explanation of the 
opportunities that exist in each field separately. 

2.1. NLP for Requirements Engineering 
Natural Language Processing for Requirements Engineering (NLP4RE) and related topics have been extensively 
researched by computer science scholars and have also made their way into adjacent domains [16]. To survey and 
summarize existing approaches and possibilities regarding the field and application of NLP to Requirements 
Engineering in the context of systems engineering and development, the authors conducted a survey of 133 NLP tools 
[17] to assess their usefulness for eliciting structure from a requirements specification. All tools were analyzed with a 
set of criteria to allow for both quantitative and qualitative analysis.  
The result of the review and survey was that no approach currently meets all the criteria necessary to elicit sufficient 
structure for a subsequent assessment of complexity. The contenders that fulfilled most criteria only partially 
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targeted the extraction of structure and thus require further adaptation to be considered useful. Other approaches 
and tools that did target the elicitation of structure primarily turned out to be not openly accessible as far as their 
code basis is concerned, which makes them only conceptually useful and consequently requires reconstruction of 
the actual tools. 
Despite the lack of existing solutions, which led to the development of the approach described in Part 3, the four 
publications most closely related to the presented work are discussed here to provide a better understanding of the 
contribution of the presented research. 
The first related research project by Ferrari, Gnesi, and Tolomei [18] used an algorithm called “Sliding Head-Tail 
Component” (S-HTC) to cluster requirements based on two factors: lexical relation and contiguous order in the 
document. The algorithm emulates the process of reading a requirements document with the inclusion of relations. 
The authors claim that by applying the S-HTC, a hidden structure of the document can be elicited that can even be 
refined with additional runs. Despite their ability to structure a document, the clustering within the approach does 
not enable a specification-wide structure definition without consideration of the original setup of the document. 
The second related publication was published by Hamza and Walker [19]. In their work, they outline their “Feature 
and Feature Relationship Extraction” (FFRE) approach, which allows for the decomposition of a requirement set into 
features and their respective structure. An algorithm takes into account semantic similarities to form connections 
and ultimately yields a feature model. While such a model can be seen as a structure of the set, it is limited to the 
features and thus leaves other connections out that are not useful for the feature model. 
Third, Tahvili et al. [20] published an NLP approach that enables the functional dependency detection between 
integration test cases. By analyzing internal communication between modules, the approach allows for the detection 
of dependencies of requirements and test cases, respectively. These dependencies are then used to build a structure 
of the respective requirements in addition to the modules. While this approach does elicit structure, it only links the 
requirements to models and does not assess the structure inherent to the requirements. 
Lastly, Arora and Zimmer outlined an approach using NLP to extract domain name models from natural language 
requirements [21]. While their approach specifically targets the extraction of models and not structure, part of it 
elicits connections from requirement statements that link subjects and objects sequentially, which aligns with the 
presented approach. Although Arora and Zimmer used similar NLP tools, their structural extraction has to be 
considered partial since it was not the main focus. Nevertheless, due to their connection to the work at hand, the 
correctness achieved by Arora and Zimmer supports the results of the case study presented in Part 4. 
All in all, the literature review mentioned above [17] and the presented related works do not address the structural 
elicitation from textual requirements nor the complexity, which is what the presented approach provides. Due to the 
multitude of existing complexity metrics, the next section provides an overview of the field. 

2.2. Complexity and Metrics 
The general literature regarding system complexity is characterized by many publications from different scholars. 
With this diversity comes the fact that currently, there is no standardized model to characterize the complexity of a 
system or network, for instance [22]. Furthermore, some scholars describe inherent problems and difficulties that 
come with the nature of complexity, leading to inability to quantify or even manage the resulting dynamics [5, 6]. As 
a result, when looking for complexity measures and metrics in a general sense, a multitude of options can be found 
that are associated with various scientific fields [23]. The most popular and closely related ones are discussed below. 
Please note that complexity in the context of this research, and specifically regarding requirements, is classified as 
the identification of the attributes and characteristics of complex systems/constructs, and pertains to the concepts of 
multi-dependency dynamics, uncertainty, and emergence, caused by the behavior and interaction of known 
components [37-40]. This definition also aligns with the works cited earlier in this chapter. 
One of the most, if not the most famous metric for complexity is Shannon’s entropy [24]. By using the probability of 
a specific variable, the metric assesses the information content in the form of weighted averages. The metric was 
used to measure complexity in a multitude of fields and applications and is still applied as a measure of graph 
complexity [25]. Furthermore, Shannon’s metric has inspired the development of various other information-based 
complexity metrics [26], which also include metrics such as Gell-Mann’s effective complexity [27, 28]. Other metrics 
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that have gained popularity over time are McCabe’s Cyclomatic Complexity [12] and Halstead’s approach [29], both 
for software code. 
Since the output of the NLP, as shown in Part 3 and 4, is a structural network representation in different forms, graph 
theoretical and spectral metrics for complexity are applicable as well. Looking into these metrics shows that 
approaches such as Gutman’s graph energy [30, 31], which was developed based on chemistry approaches from the 
1940s, can quantify complexity based on the spectrum (set of eigenvalues) of a graph and its matrix. More recently, 
Sinha and de Weck [1] developed a comprehensive structural complexity metric that uses graph energy/entropy to 
assess topological aspects of a system. Similar approaches with a different basis have been shown by Nikiforov [32] 
using singular values instead. Also, Wu et al. proposed a metric that uses natural connectivity [33]. Many of these 
approaches also consider and incorporate the use of network/graph density [33, 34]. More recently, Lei, Liu, and Wei 
[22] proposed an approach that claims to resolve the network scaling dependence of existing approaches by 
combining structural entropy with the absolute density of a graph. 
Looking specifically for requirements complexity, Salado and Nilchiani’s [14] concept of problem complexity 
incorporates the conflicts and physical properties within requirements to add a factor to other complexity 
dimensions. Also, Sharma and Kushwaha [35] proposed a metric including NLP for software requirements that relies 
on classification and structure inference based on past projects in the context of knowledge-based NLP. Lastly, 
Purawinata, Ariadi, and Abbas [36] recently proposed a neural network-based algorithm to predict software 
complexity by calculating requirements complexity based on the number of categories.  
Overall, the literature regarding complexity of requirements shows that current approaches either rely on manual 
processing or pre-existing data for training. Thus, none of these approaches can be considered fully automated due 
to these drawbacks. A similar conclusion was also found by the authors regarding NLP4RE in general [17]. Therefore, 
the goal of the presented research was the development of an automated requirements processing approach that 
elicits structure and allows for quantitative complexity assessment.  

3. METHODOLOGY AND SETUP  

As mentioned earlier, the research presented enables the assessment of the complexity that is inherent to and 
introduced by the requirements. One of the limitations of the approaches discussed in the previous section is that 
they depend on an existing system structure for their implementation, which requirements do not necessarily 
contain. While some requirements specifications do contain a hierarchy or levels, their structure does not have the 
same kind of lateral and vertical connections as the system itself, and therefore, system structure cannot be inferred. 
Thus, for the presented research, an NLP framework was designed that allows for the identification and organization 
of all entities within a requirements specification. By applying the NLP process presented in Figure 1, two types of 
structure can be deduced from a set of requirements (in addition to a hierarchy structure, if available): (1) the 
structure based on the terms and entities in the requirement text, and (2) the connections of the requirements based 
on the entities within them. All of the outlined steps were achieved by using the spaCy [41] library, which is an open-
source NLP library that provides the necessary functions shown below and described on the next page. 
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Figure 1 - NLP Flowchart and Process 

As depicted, in a first step, an imported requirement text is split into the different requirements. Depending on the 
input, this can be based on a table or directly on the content. This splitting yields the Requirement List. With this 
list, the NLP is used to identify the tokens in each requirement, which yields a Token List. Based on the Token List, 
the parts of speech can be tagged, which identifies the different roles/categories of the text in accordance with 
Universal POS tags [42]. This tagging yields the Requirement Part-of-Speech list for each requirement and tokens 
therein. Adding to the POS tagging, chunking is applied to reveal the noun chunks within the sentences, which 
results in a Chunk List. With the chunks and parts of speech, their dependencies are analyzed, which produces the 
role that each token plays in a sentence as a Dependency overview. A pattern matcher is used to identify structural 
patterns, such as lists and concatenations between the noun chunks, which then allows for the linking of the 
entities that are found within the noun chunks. Lastly, this entity linking then can be combined to build the 
structure of the requirements for the structural linking. The last step connects the entities based on their 
relationships in the text, such as the nouns with the objects, and concatenations/lists. 
To provide an example, the following requirement is divided into the entities listed below. 
“The landing gear shall be designed for a service life equal to that of the air vehicle airframe structure.”: 

(A) landing gear 
(B) service life 
(C) air vehicle airframe structure 

Herein, the following connections indicate the structure: (A) is connected to (B) and (B) is connected to (C). 
The result of the process described above is a network of terms/entities that are connected based on their sentence 
structure and text relationships. In addition, since the different entities are part of individual requirements, these 
requirements can also be linked based on their content, which enables the creation of another dimension with 
additional insights. Thus, overall, three different layers and structural aspects of the requirements can be elicited, as 
shown in Figure 2: the hierarchy of the requirements (if existent), the structural network of the requirements based 
on the contained entities, and the structural network of the entities separately. The networks were managed using 
the open-source library NetworkX [43], which also enables the computation of the metrics in the next paragraph. 
With the results produced by the NLP, analyses can b fe performed for each of the layers. To represent the potential 
of the created approach and provide some useful initial insights for the application, the metric of network density 
was chosen to be demonstrated for the Requirement Structure, and the spectral entropy [30, 31] was used to 
analyze the NLP Structure, which represents the entity connections. These metrics can be used to quantify 
complexity overall and have been used by the authors and researchers cited in the previous chapter as well. 
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Figure 2 - Extracted Dimensions and Relations 

4. CASE STUDY, RESULTS, AND VALIDITY 

With the process and possibilities outlined above, a case study was conducted to address two main objectives: (1) the 
validation and proof of concept for the NLP approach, and (2) the application and test of different metrics. To 
achieve this, a case study from the Systems Engineering Research Center (SERC) was used. The case study was based 
on an ongoing model-based systems engineering (MBSE) research project, which uses an unmanned aircraft system 
(UAS) as an experimental subject. The project includes multiple efforts such as physical factors and cost modeling 
[15]. As part of these efforts, the project includes a set of requirements for the UAS landing gear in text form, which 
were used as a foundation for the presented study.  
For an initial assessment of the requirements, the developed NLP approach was applied to detect requirements that 
contain potential spelling errors, incorrect wordings, and term ambiguities by reviewing the results of the identified 
entities/terms and checking them for consistency and errors. For instance, if the NLP algorithm detected two 
different forms for the same entity, such as “airplane” and “plane,” one of the two could be replaced with the other 
to ensure consistency and that the entities would be identified as the same network nodes. Another example were 
appearances where terms were used as acronyms in some requirements and spelled out in others. Thus, using the 
detection of the NLP algorithm allowed for the identification and subsequent removal of clarity issues. This initial 
application resulted in a specification that included 79 individual requirements in tabular form. While these 
requirements were written with standards such as ISO 9001 in mind, they were not all in accordance with the 
standard. The robustness/error handling of the approach was also tested in the case study. 
The 79 requirements were processed according to the steps shown in Figure 1. The result was a catalog of 389 
identified entities within the 79 requirements that contained 246 unique individual entities. With the structural 
linking then, the connections between those terms were identified, which yielded the network of entities that the 
requirement structure is derived from. Figure 3 shows an excerpt of the adjacency matrix of the entities, with a 
legend provided below. 

                A  B  C  D  E  F  G  H  I  J  …
             A  0  1  0  0  0  0  0  0  0  0  …
             B  1  0  1  0  0  0  0  0  0  0  …
             C  0  1  0  0  0  0  0  0  0  0  …
             D  0  0  0  0  1  0  0  0  0  0  …
             E  0  0  0  1  0  1  0  0  0  0  …
             F  0  0  0  0  1  0  1  0  0  0  …
             G  0  0  0  0  0  1  0  1  0  0  …
             H  0  0  0  0  0  0  1  0  0  0  …
             I  0  0  0  0  0  0  0  0  0  1  …
             J  0  0  0  0  0  0  0  0  1  0  …
             …  …  …  …  …  …  …  …  …  …  …  … 

A = landing gear structure
B = service life
C = air vehicle airframe structure
D = reversal
E = landing gear command
F = actuation
G = landing gear
H = last position
I = alternate extension system
J = capability

Figure 3 - Structural Entities Adjacency Matrix 
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The full matrix in Figure 3 has a size of 246 by 246 since it includes all the unique individual entities and their 
connections. Furthermore, a 79 by 79 adjacency matrix of the individual requirements was created to represent the 
network of the requirements, rather than the entities they contain. Based on these adjacency matrices, the 
structures can also be represented as an interactive network, which was realized using the pyvis library [44]. The 
result is a fully interactive network that allows for the assessment of connections and constellations, as shown in 
Figure 4. 

 
Figure 4 - Requirements Structure Network 

With the produced results, the actual analysis was conducted to apply the metrics to the output. Thus, the density of 
the requirements network was calculated, and the entropy of the term/entity network, since these two metrics are 
applicable and, as shown in Section 2.2, form a good foundation for the development of further metrics. Since a 
single calculation of the two factors as a snapshot of the final state would provide only a limited view, their evolution 
through the requirements definition process was analyzed. The requirements specification was processed 
sequentially, and the two metrics were recorded for each additional requirement, allowing the progression over time 
to be observed. 
The two charts shown in Figure 5 and Figure 6 illustrate the outputs discussed in Part 5.  

                    

Figure 5 - Requirement Network Density - Progressive	                Figure 6 - Entity Network Entropy - Cumulative 
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Lastly, to test the validity of the results regarding the NLP output that was used to produce the calculated metrics 
above, a blind test was conducted to assess the correctness and validity of the results similar to Aurora et al. as well 
as Falessi and Layman [21, 45]. A specific metric was established to evaluate the quality of the results. To guide this 
evaluation, the accuracy and quality measures detailed by Derczynski [46], as well as Nakache, Metais, and Timsit 
[47], were used. Consequently, the precision value was calculated as a metric to measure correctness. Precision is the 
ratio of all true positives to the sum of all true positives and false positives. For the blind test, a human participant 
was given the requirements specification for the presented case and instructed to manually apply the rules and 
elicitation approach. The list of entities and the requirements network structure produced by the human participant 
were then cross-checked against the NLP approach’s output, allowing for the precision to be calculated using the 
human results as a benchmark. The developed NLP approach was 99.74 percent correct regarding the identification 
of the entities within the requirements, which means that 388 out of the 389 entities were correctly identified. 
Additionally, the structure produced by the NLP approach was 98.71 percent correct, which equates to 310 out of the 
314 non-duplicate connections in the network being correctly linked according to the defined rules and sequence of 
the algorithm. 

5. DISCUSSION & INTERPRETATION 

The results produced by the developed approach provide a range of interpretations and insights, even without a 
compound metric such as [1]. Thus, the paragraphs below will discuss the obtained results and how they can be 
analyzed, before discussing the current limitations and potential improvement points for the approach. 

First, looking at Figure 5—the density measure of the requirements network—shows that the density trends 
downwards, which is to be expected in a growing network that is not fragmented and significantly disconnected. Yet, 
in contrast to the minimum density in the same graph, the actual density shows that it veers further away from the 
possible minimum. The minimum was calculated with the following formula: 

	     where  is the number of nodes	 (1) 

The formula above expresses the minimum number of connections necessary in a network (n-1) to connect all nodes 
with at least one edge, without creating fragments. This also implies that no loops are created, since a loop, 
regardless of its size, would necessitate an additional edge, and the resulting edge count would exceed the minimum 
density. 
The progress of the density in Figure 5 shows that over time, the increasing distance from the minimum density 
means that more and more loops are introduced, which can eventually also be clearly seen in the visual 
representation in Figure 4. These loops are potentially problematic, as they can turn into reinforcing loops (negative 
as well as positive), which can make satisfaction of a requirement and change management [48] difficult. While the 
opposite is possible—the creation of balancing loops—the mere existence of loops increases tracking/tracing effort. 
In addition to the issues created by loops, the growth or distance from the minimum density increases the number of 
connections overall, and thus the edges to track. In the case of humans and even machines working with the 
resulting structure, we argue that this increase leads to higher effort and cognitive difficulties that could negatively 
affect the development of the system in various ways, which metrics such as McCabe [12] corroborate. Validating 
these circumstances is currently being done in a follow-up case study and is planned to be published soon. 
Lastly, the density graph also shows different segments with stronger and less strong implications. For instance, the 
requirements after number 31 increase the density disproportionately, which means that in this section, an unusually 
high number of connections is added to the system with respectively fewer nodes. Such insights can point to 
requirements of interest that merit scrutiny and could be assessed by a human in the loop regarding their role to 
either lessen their impact or consider their position. 

dmin =
(n − 1)

(n ⋅ (n − 1))
2

n
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Regarding Figure 6 and the entropy within the entity network, we can see a steadily increasing trend, which also was 
to be expected due to the growing size of the network throughout the requirements specification. Yet, similar 
insights to those gained from the density above can be deduced: the impact each requirement has on the overall 
entropy is not uniform. Some requirements introduce higher amounts of entropy than others, potentially due to a 
higher number of added nodes or connections. To investigate this, the number of entities per requirement was 
plotted versus the entropy impact of the respective requirement. The impact was obtained by removing the 
respective individual requirement and recalculating the entropy difference of the remaining structure. The results 
are shown in Figure 7 below. 

 

Figure 7 - Entropy Impact vs. Added Entity Number 

Calculating the R and R² value of the scatter in Figure 7 reveals a strong correlation (R=0.75) between the number of 
entities added by a requirement and the entropy impact it has. The R² value is computed to be 0.5565. Thus, the 
number of entities identified in a requirement does correlate with the entropy it introduces, which allows for the 
argument that shorter requirements with fewer factors and entities add less entropy on a per requirement basis and 
are easier to process and understand. 
Despite the insightful possibilities and analyses enabled by the metrics above, certain drawbacks have to be 
mentioned, which also motivated the future work described in the conclusion section. First and foremost, the 
metrics presented in this case study show a dependence on the overall size of the network and, consequently, the 
size of the requirements specification. Such issues have been noted by other researchers [22] who attempted to 
decouple their metrics from the size and scope of the network, but in doing so, introduced other potential 
drawbacks. Therefore, this issue is considered critically important for the future case studies currently underway for 
our approach. 
Second, the presented assessment has some dependence on the sequence of the requirements catalog/specification. 
While the assumption can be made that the sequence of the requirements from beginning to end is of importance, 
this significance diminishes as the specification grows larger and once modularization or segmentation of specific 
requirement aspects, such as functional and non-functional requirements, for example, are reached. As a result, for 
these cases, the inclusion and reliance on sequence must be reassessed. This also applies to the same entities 
possibly detected in different modules, where a connection might not be relevant or accurate. 
Yet, despite these considerations, the approach presented offers valuable insights and will be further improved. 

Lastly, to discuss the limits of the current state of the research, three limitations/scope constraints should be 
mentioned. First, due to the researcher’s knowledge of the case study, the created approach and its included rule set 
may be subject to overfitting to the specifics of the study. The implemented rules address potential problems and, for 
instance, significant deviations from standards, like the mentioned ISO 9001. However, this potential overfitting and 
associated restrictions do not constitute a hard limit of the developed approach, since the rules within the algorithm 
can be adjusted and amended flexibly. Therefore, we are confident that the developed approach can be transferred 
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to a variety of cases and problems without loss of functionality, provided that emerging issues and errors are 
addressed iteratively. This also means that other standards or semi-structured content are possible, albeit not 
functional yet, which is also subject of the next case study. 
Second, existing limitations of NLP have to be mentioned. For instance, the current iteration of the algorithm does 
not include any analysis and treats different entities necessarily as unique. This could potentially lead to issues 
stemming from working ambiguities and variances. For instance, looking at Figure 3, we see that there are different 
variations that could all be interpreted as “landing gear,” yet they are separated due to their different terminology. 
While this might be correct from a semantic perspective, general correctness cannot be assumed overall, and thus, 
such unification issues have to be considered moving forward. One possible solution would be a human-in-the-loop 
approach that allows for on-the-fly correction and adjustment of possible synonyms. The same issue applies even 
more to pronouns such as “that,” for instance, which need to be replaced or explained to fulfill their correct role as a 
substitute. 
Finally, the meaningfulness of the presented metrics has to be discussed. Since the analysis addresses one case study, 
the results cannot easily be transferred or compared to other cases without calibration. Due to the nature of 
language, deviations from standards and inherent randomness within text can have different implications for 
requirement sets and, consequently, for the metrics. These can and are planned to be addressed with a compound 
metric that allows for calibration. 
The developed approach, with the correctness and validity numbers above, demonstrates its functionality and 
potential. Additionally, the application has revealed further benefits, such as the error detection possibilities and 
improvement recommendations for the requirements. While these benefits were not the main focus of approach 
development, they reveal an additional and arguably different direction for adaptation. Overall, given the successful 
application, expansion, and adaptation opportunities, we argue that there is great potential in this research. 

6. CONCLUSION  

The paper at hand presented a new automated system analysis approach based on requirements specifications in 
natural language text form. By using a sequence of NLP tools, an algorithm was developed that extracts three 
structural layers from a requirements document: the hierarchy structure of the requirements, the structure of the 
requirements based on their content, and the structure of the specific terms/entities within the requirements. With 
these results, the complexity of the requirement set can be assessed on each layer using different metrics. For the 
presented case study—an UAS—the developed approach achieved a correctness of 99.74 percent for the entities 
within the requirements, and the correctness of the produced structure was 98.71 percent. 
With the obtained result, the case study was evaluated regarding the density of the requirements network and the 
spectral entropy of the entity network. The analysis showed an increasing trend for both metrics, indicating a 
growing complexity of the requirements throughout the specification process and an increasing potential for 
disadvantageous feedback loops in the network. However, the current metrics show a dependency on the size of the 
network, the size of the requirements specification, and the number of terms introduced by each requirement. The 
entropy impact of each requirement was correlated with the number of contained entities with an R-value of 0.75. 
Current limitations of the approach are a potential overfitting to the presented case study. However, this can be 
mitigated by the flexible and adjustable rule set within the algorithm, which allows for transfer to other cases. 
Additionally, the use of NLP introduces certain limitations, such as potentially incorrect semantic links and different 
scaling challenges, which are to be addressed with future iterations and case studies.  
Overall, the developed approach poses a new and useful tool to address the need for quantifiable complexity 
assessment, as outlined in the introduction. By making complexity measurable and quantifiable based on the 
requirements, the approach enables analyses that can be used to prevent unnoticed increases or jumps in 
complexity (complexity creep), disproportionate complexity levels compared to other and/or previous projects, and 
clusters that contribute significantly and excessively to the overall complexity. By monitoring and analyzing such 
metrics, projects can be better controlled, helping to reduce risk by providing a way to identify and address potential 
problems early before the consequences become visible and possibly irrevocable. Early identification and 
assessment are especially crucial for requirements, as they significantly affect nearly all other development phases. 
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Additionally, complexity—being characterized by emergent behavior—can also be quantified with the presented 
approach, which allows for potential minimization and or optimization as well. 
Through the quantification and measurements enabled by the approach, the complexity introduced by requirements 
adds another factor to the sources of complexity in systems development, as outlined by Salado and Nilchiani [14]. 
Requirements complexity thus is an additional aspect of the overall development complexity sum and must be 
considered alongside other factors to provide a holistic overview for systems development. Furthermore, since 
requirements complexity is not always directly related to system components and parts, it offers an evaluation of 
complexity on a meta level, which also relates to human effort and project management factors. 
In line with these benefits and opportunities, the authors are currently working on a follow-up case study to not only 
transfer the approach but also develop a compound metric that addresses the limitations and concerns of those 
presented in this paper. Furthermore, in preparation for future case studies, the approach has also been applied to a 
less structured requirement set that contained different input formats and partial tables. This set is publicly available 
as part of [49]. In initial tests, the approach demonstrated great potential for accuracy, and an expanded set of 
correctness metrics is currently being developed as well. 
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