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Abstract—This paper uses Natural Language Processing to 

provide augmented intelligence assistance to the resource 

intensive task of aligning systems engineering artifacts, namely 

text requirements and system models, with ontologies. Ontologies 

are a key enabling technology for digital, multidisciplinary 

interoperability. The approach presented in this paper combines 

the efficiency of statistical based natural language processing to 

process large sets of data with expert verification of output to 

enable accurate alignment to ontologies in a time efficient manner. 

It applies this approach to an example from the 

telecommunications domain to demonstrate the workflows and 

highlight key points in the process. Enabling easier, faster 

alignment of systems engineering artifacts with ontologies allows 

for a holistic view of a system under design and enables 

interoperability between tools and domains. 

Keywords—ontology, natural language processing, semantic 

web, digital engineering, authoritative source of truth, augmented 

intelligence 

I. INTRODUCTION 

Digital interoperability between different data models is 
becoming increasingly important. The growing complexity of 
engineered systems and the interrelated nature of many aspects 
of a system means that common understanding across models 
will continue to grow in importance.  

Ontologies provide a common communication and 
discussion vocabulary for different tools and models to use when 
talking with each other, which makes them great theoretical 
tools for interoperability [1]. However, terms within ontologies 
must be explicitly aligned to terms used within disparate models 
in order to achieve the stated interoperability potential of 
ontologies. This alignment process is often called mapping, and 
while it can be effective, it can also be time and resource 
intensive. 

This paper presents an approach to enhance the ability to 
quickly and accurately map data from requirements and system 
models to ontologies. Combining Natural Language Processing 
and expert verification enables an augmented intelligence 
approach for this alignment process and applies existing 
research into the parsing of requirements and the tagging of 
system models. By increasing the efficiency with which these 
system artifacts can be aligned to ontologies, this paper seeks to 
bridge the gap from theoretically useful to practically feasible. 

II. BACKGROUND AND STATE OF THE ART 

A. Ontologies in Systems Engineering 

Systems themselves can be captured in terms of ontologies, 
and benefits can be derived from such a form of knowledge 
representation. Hennig et al. [2] use automated reasoning 
enabled by an ontological understanding of a system to perform 
tasks such as engineering discipline allocation to certain system 
elements and creation of Critical Item Lists based on axioms 
defined in the underlying ontologies. Dunbar et al. [3] 
demonstrate the ability to perform verification tasks on 
ontology-aligned data to determine completeness of a model 
according to context specific definitions. In another paper, 
Dunbar et al. [4] demonstrates how ontology-aligned data can 
be used to enable Digital Thread applications. 

In order to perform some of these analyses on systems 
represented in ontologies, mechanisms for transforming a 
system from more common representations, such as the Systems 
Modeling Language (SysML), to ontology-aligned data must be 
established. At NASA’s Jet Propulsion Lab (JPL), research has 
been performed that uses the SysML stereotype as a mechanism 
for tagging a SysML model with terms corresponding to classes 
in ontologies [5], [6]. Dunbar et al. [4] introduce a new interface 
that allows external tools to read and write to ontology-aligned 
data without going through a mapping process. However, this 
new interface is geared more towards model based engineering 
tools outside of systems engineering, and the SysML model 
transformation also uses stereotypes as tags for a mapping 
process to the ontology-aligned data. 

While the use of custom SysML stereotypes as tags is 
beneficial for explicitly tying SysML system models to 
ontological classes, it can quickly become unwieldy as the 
models continue to grow. Manual tagging of tens or a couple of 
hundred elements may be arduous, but it is doable. Manual 
tagging of thousands of elements is an order of magnitude higher 
and difficult if not impossible to achieve. 

B. Natural Language Processing for Requirements 

Engineering 

Natural Language Processing (NLP), despite some 
controversial definitions for it [7], can be defined in its core as 
the attempt to process natural language with computer tools that 
are supposed to allow a human-like linguistic analysis and 



manipulation of text/speech [7]–[9]. This definition is very 
broad and covers a plethora of possible applications. This 
diversity is also seen in the multitude of research directions that 
emerged over time for NLP. Since the topic of this publication 
concerns ontologies and requirements in particular, the 
applicable research and approaches are fortunately more 
specific. 

In general, NLP in conjunction with ontologies and 
requirements is targeting what is called developed text analysis. 
For this type of analysis, three categories exist [10]: syntactic, 
semantic, and lexical methods. The first, syntactic approaches, 
are concerned with the structure of sentences and the 
grammatical constructs therein. The second, semantic 
approaches, address the logical structure of a sentence. While 
robust, semantic approaches require a set sentence structure, 
without which they cannot properly function. Lastly, lexical 
methods can be considered the most robust [10] due to the fact 
that they do not rely on part-of-speech analysis, for example. 
Instead, lexical approaches work on the level of the character 
sequence to analyze the text.  

Specifically for requirements, a whole research field exists 
called Natural Language Processing for Requirements 
Engineering (NLP4RE). A comprehensive overview for the 
NLP4RE field was provided recently by Zhao et al. [11], who 
compared a vast number of approaches in the NLP4RE sector. 
Based on said review, and thus also associated with the field is 
the approach that is applied in the presented research, shown by 
Vierlboeck, Nilchiani, and Blackburn [12]. The applied 
syntactic approach allows for the decomposition of requirements 
into structural networks that contain not only the connections 
between the requirements, but also the specific elements therein. 
The result of this approach is a structured body of information 
that represents the requirements as well as their connections and 
links. These results and the content of the approach, enabled 
through NLP, form a vital part of the concept presented in this 
paper. 

C. Similarity Metrics 

When it comes to mapping and tagging, identifying the same 
terms, similar terms, and/or related terms is crucial. Yet, when it 
comes to natural language, not all related terms are equally 
similar. Thus, defining similarity requires the assessment of 
potential approaches for classifications and/or clustering to find 
connections. 

One, and maybe the most prominent field that addresses the 
problem above, is distributional semantics [13]. Distributional 
semantics targets the meanings of words and defines their 
interpretation in different contexts. As a result, words that occur 
in the same context are considered as similar in meaning [13] 
and thus, a classification is enabled. While not the only approach 
to implement such techniques, the most popular one is the use 
of vectorization. Vectorization allows for the algebraic 
definition of identifiers and as a result, the similarity or 
closeness of terms can be calculated [14]. These calculations 
allow for clustering and classification. 

Another classification/clustering approach, which in part is 
related to the context use in word embeddings, is the use of 
similarity measures such as syntactical, contextual, and lexical 

similarity, as outlined by Nenadić et al. [15]. Using such 
measures (either individually or as a combination [16]) can 
allow for the definition of similarity and thus 
grouping/clustering. This clustering can then be used for 
taxonomy building. 

In addition to the approaches above, simpler approaches 
based on character similarity and root words have to be 
mentioned since they, while not necessarily targeting the 
meaning and semantics, can be essential for the ontology 
mapping and organization. For instance, root words can be used 
to connect word families as well as tenses for verbs and 
lemmatization in general. 

When it comes to the problem at hand specifically, another 
issue to keep in mind is the circumstantial factor of domain 
specificity. Since ontologies and the NLP approaches discussed 
in this paper have certain domain dependent elements, the 
context and overall domain has to be incorporated accordingly. 
The issues and difficulties concerning domain specificity and 
interpretational contexts have been evaluated by Lipizzi et al. as 
well [17], [18]. 

All in all, the literature and information above shows that 
there are different ways to address the issues discussed in this 
paper regarding ontology processing as also discussed by Kof 
[16]. How the information above is used in the concept is 
outlined in the following sections. 

While work has been performed in ontology-aligned data in 
systems engineering, NLP4RE, and similarity metrics, a 
combination of the fields provides a unique contribution to the 
Systems community. In the combination, an opportunity for 
augmented intelligence emerges that allows various NLP 
algorithms, combined with closeness metrics comparing NLP 
output to various domain ontology classes, to aid in the tagging 
of a system model. This brings alignment between three 
previously separate bodies of knowledge within a system design 
– the requirements used to inform, verify, and validate the 
design, the system model that houses the architecture and an 
interdisciplinary view of the system under design, and domain 
ontologies that provide a formal vocabulary for describing the 
domain contexts for the design and provide capacity for the 
transformation of the design into a graph data structure. 

III. METHODS 

The process of using NLP to assist in the alignment process 
can be broken into two separate workflows: the alignment 
between requirements and ontologies and the alignment 
between a system model and ontologies. 

A. Requirements and Ontologies Alignment Workflow 

With requirements, the end goal of an ontology alignment 
workflow is to identify all terms within the requirement set that 
correspond to existing or potential ontology classes within the 
given set of used ontologies. This paper uses a workflow to 
achieve this that combines NLP and Expert Verification (Fig. 1). 



 
Fig. 1. Alignment Between Requirements and Ontologies 

The first part of the process uses NLP to parse text 
requirements into relevant entities similar to the technique 
described by Vierlboeck, Nilchiani, and Blackburn [12]. From 
this output a term list can be compiled to be used in a similarity 
analysis. As described in the Background section of this paper, 
there are various approaches to assessing similarity of words. 
Further research can be done to determine what approach works 
best in this context, but the researchers recommend structuring 
the workflow in a way that allows the NLP similarity analysis to 
be a modular component of a larger workflow. Similarity 
analysis, from the workflow perspective, can be seen as a black 
box where two lists of terms are used as inputs: the term list from 
the requirements and the list of classes in the used ontologies. 
The outputs are ordered lists of possible matches from the 
second list (ontologies) that correspond to each term in the first 
list (requirements) along with a score of each possible match. 
Given the modularity of the similarity analysis, different forms 
of analysis can be used and modified to best fit the given context. 

An essential part of the workflow is expert verification. 
Given the precise nature of engineering projects, the formal and 
unambiguous nature of ontologies, and the interoperability 
functionality that ontologies are meant to play in this context, a 
stochastic approach to alignment of requirements or system 
model elements to ontological classes in insufficient by itself. 
However, when combined with expert verification, stochastic 
approaches and NLP provide immense value by processing data 
well and presenting it for human verification in a way that limits 
the stochastic nature of the approach. For requirements, the 
potential matches can be presented to an expert in a way that 
allows the expert to process the matches rapidly. There are three 
possible outcomes of the verification: 

1. Approve Alignment – in this case, the expert verifies 
that the NLP algorithm chose the correct class to 
correspond with the requirement (or system element in 
the next workflow). 

2. Adjust Alignment – in this case, the expert sees that the 
NLP algorithm did not choose the correct class and 
corrects the alignment. It may be that the correct option 
was further down the list of possible classes, or it may 
be that the NLP algorithm did not see the correct class 
as a possibility. It also may be that in this process the 
requirement (or system element in the next workflow) 
is misspelled or otherwise incorrect in the original 
source material, and a correction can be made. 

3. Flag Term for Ontology Expansion – in this case, the 
expert sees a valid term in the requirement (or system 
model), but there is no ontology class that corresponds 
to the element. This is an indication that an ontologist 
needs to expand the used ontologies to capture the new 
term. In this way, the expert verification process can 
actually aid in the expansion of ontologies that can then 
be reused in future projects. 

This workflow aims to align requirement terms with 
ontology classes. However, there will certainly be terms 
included in most requirement sets that do not correspond to 
classes within an ontology. For example, the requirement “The 
transmit antenna shall have a gain of no less than 9 dB” includes 
some elements that would correspond to an ontological class – 
transmit antenna and gain are both concepts that could be 
captured in an ontology. However, “9 dB” is a descriptor of the 
gain of the antenna, and it would be considered an instance of 
gain and not correspond to an ontological class itself. Likewise, 
the ontologies used in a project will almost certainly contain 
classes that have no match in the requirement set. Perhaps the 
ontology is being reused from a previous project that has slightly 
different specifics, so some classes were developed that will not 
be used in this project. Thus, while alignment is sought between 
the requirements and the ontologies, 100 percent alignment is 
not the goal of the workflow (Fig 2). 

 
Fig. 2. Venn Diagram Showing the Overlap Between Requirements and 

Ontologies  

B. System Model and Ontologies Alignment Workflow 

With a system model, the end goal of an ontology alignment 
workflow is to identify all elements within a system model that 
correspond to existing or potential ontology classes within the 
given set of used ontologies and to tag the system model with 



the relevant ontological class term. This goal is similar to the 
requirements alignment goal, and the workflow (Fig 3) is similar 
as well, but it has some key differences. 

 

Fig. 3. Alignment Between SysML System Models and Ontologies 

Similar to the requirements workflow, this workflow begins 
with the development of a terms list. However, this workflow 
does not need NLP to extract terms. Since SysML element 
names are typically short and descriptive, they can be extracted 
as is. After this, the same similarity metric used in the 
requirements workflow can be used to provide probable matches 
between the developed term list and the classes present in the 
used ontologies. Expert verification is then performed on the 
probable matches in a similar manner to the requirements 
workflow. 

A significant difference in this workflow exists after 
alignment has been performed. In the requirements workflow, it 
is reasonable to have direct alignment when the ontology and the 
requirement are discussing the same concept. Discrepancies can 
thus be addressed by updating the requirement language to align 
with the ontological term in the ontology. In a system model, 
there are other reasons for naming an element something 
different than the ontological class associated with that element. 
For example, in an aircraft system model, a block may be named 
“Left Rear LG,” and its tag may be “Landing Gear Structure." 
The block naming is interesting from an architectural standpoint, 
and the modeler may insist on keeping it instead of “correcting” 

it to align with the ontology term. However, the tag (eventually 
instantiated by a stereotype in the SysML model) will need to 
align directly with the ontology term. Thus, while the element 
name is used in the similarity metric to provide possible matches 
to an ontology, the alignment is actually performed between an 
added stereotype in the system model and the ontology classes. 

IV. RESULTS AND VALIDATION 

The shown approach has been applied to a conceptual model 
from the telecommunication domain [19]. The test case system 
is a two-way radio communication system, and the particular 
design task is centered around a tower site that has a tower 
subsystem and a shelter subsystem, which houses most of the 
radio equipment for the site. A basic ontology has been 
developed to capture various terms associated with the 
telecommunications system. Table I shows a partial list on 
ontology classes that are part of the conceptual use case. 

TABLE I.  PARTIAL LIST OF ONTOLOGY CLASSES RELATED TO 

TELECOMMUNICATIONS DOMAIN 

Radio Access 
Network 

RAN Tx Antenna 
Type 

Antenna Gain 

RAN Tower Site 
RAN Tx Antenna 

Height 
FCC ASR Number 

RAN Tower 
Subsystem 

RAN Tx Mainline 
Type 

RAN Transmitter 
Power 

RAN Shelter 
Subsystem 

RAN Tx Mainline 
Length 

RAN Frequency 
Band 

 

A. Requirements Alignment 

Requirements are developed in the Systems Engineering 
process to provide design criteria and constraints necessary for 
successful implementation of the system. Consider the three 
example textual requirements from Table II. 

TABLE II.  REQUIREMENTS TABLE 

Req Num Requirement Text 

1 
The Transmit Antenna shall provide a minimum of 9 
dB of gain. 

2 
The RAN Tower shall provide a minimum of 92% 
Service Area Covered. 

3 
The frequency band used by the RAN equipment shall 
use the 700 MHz Public Safety band. 

 

Following the first two steps in Fig. 1, the text requirements 
can be parsed into separate entities according to the 
methodology set forth by Vierlboeck et al. [18]. This parsing can 
then be used to form a term list (Table III). 

 

 



TABLE III.  TERM LIST FROM PARSED TEXT REQUIREMENTS 

Req 
Num 

Term List 

1 
Transmit 
Antenna 

Gain  

2 RAN Tower 
Service Area 

Coverage 
 

3 
Frequency 

Band 
RAN equipment 

Public Safety 
band 

 

Notice that some key information included in the textual 
requirements is left out of this term list. As discussed in the 
Methods section, the specification of 9 dB of gain in the 
requirement gives both a class of data (antenna gain) as well as 
an instance of the class that contains the constraint (9 dB). Thus, 
while the mapping process discussed below seeks to align the 
classes with the requirements, additional work will need to be 
done to create instances that provide additional constraints. 

The requirement term list can serve as an input to an NLP 
similarity module, along with the ontology class list from Table 
I. While several approaches to similarity between texts exist in 
NLP literature, some of which were discussed in previous 
sections of this paper, this conceptual use case refrains from 
choosing any particular similarity metric for demonstration 
purposes. The NLP similarity metric can be considered a black 
box with regards to the rest of the activity flow, and different 
domains or users may find that different similarity metrics work 
better for their contexts. What is important is that the NLP 
module take two inputs (ontology class list and requirements 
term list) and provide matching, preferably with a degree of 
confidence about the match to help guide expert verification in 
the next step. 

With similarity established, the preliminary matching can be 
presented to an expert for verification and modification. In Fig. 
4, a mockup of a dashboard can be seen that shows the 
requirement terms, along with a reference to what requirement 
number the term is parsed from for easy reference. Next to the 
requirement term is an ontological class, and the dashboard uses 
colors to indicate match quality. Green indicates an exact match 
between requirement term and ontology class, orange indicates 
a likely match that isn’t exact, no fill represents an unknown or 
weak match, and blue represents a user verified or modified 
match. While spacing in this paper does not allow, additional 
fields could be put in this mockup for space to write notes to 
requirements engineering and/or the ontology group. This would 
be useful in situations where a flaw in the requirement is found 
during the mapping process or an additional ontology class is 
needed to complete the mapping process. 

 

Fig. 4. Mockup Dashboard of a Requirements-Ontology Alignment Process 

B. SysML Model Alignment 

Fig. 5 shows a SysML model of a simplified architecture for 
a tower site associated with a Radio Access Network (RAN). 
This architecture is untagged, but in order to use it with the 
Digital Engineering Framework for Integration and 
Interoperability (DEFII) mentioned in Dunbar et al. [4], tags 
must be assigned to explicitly declare what ontology classes are 
represented in the SysML model. This paper will use the SysML 
stereotype to provide the tagging functionality. 



 
Fig. 5. SysML Block Definition Diagram of a Simplified 

Telecommunications Radio Access Network 

Names associated with blocks and value properties in the 
diagram can be pulled to form a term list for the SysML model 
(Table IV). 

TABLE IV.  PARTIAL SYSML TERM LIST 

Element ID SysML Terms 

bad7g Radio Access Network 

kqwb8 Tower Site 

jaa7v Tower Subsystem 

xn1h2 Shelter Subsystem 

ppaj2 Tower Structure 

vnah3 Tower Transmission Subsystem 

11bvh Radio Equipment 

 

Similar to the requirements alignment, this term list is used 
as an input alongside the ontology class list to an NLP module 
to provide a similarity metric and mapping suggesting between 
the SysML model and the ontology. Fig. 6 shows a mockup of 
the Augmented Intelligence dashboard that aids an expert in the 

verification process of the mapping between the ontology and 
the SysML model. As shown above, the coloring of the ontology 
cells provides additional information to the expert to assist in the 
mapping process. 

 

Fig. 6. Mockup Dashboard of a SysML Model-Ontology Alignment Process 

Note in Fig. 6 that the “Shelter Subsystem” SysML item has 
been incorrectly matched with the “RAN Shelter Transmission 
Subsystem” ontology class. Part of the expert verification step 
is correction of improper matching. This step is necessary and 
should not be overlooked with the assumption that the NLP 
matching algorithm is infallible. The proposed method here 
assumes limitations in the NLP algorithm and deficiencies in 
inputs (ontologies, requirements, and system models), so this 
verification step is an active check on the process. This form of 
augmented intelligence enables acceleration of workflow, but it 
does not claim to be autonomous, nor does it need to in order to 
provide clear value to the users.  

While the completion of the alignment process may be 
sufficient for the requirements portion of this paper, it is useful 
to add the additional step of adding the custom SysML 
stereotypes corresponding to ontology classes to the appropriate 
elements within the SysML model. In the DEFII framework, the 
Authoritative Source of Truth (AST) is the ontology-aligned 
data, so if the data has been fully mapped, the stereotype could 
theoretically be left out. However, for clarity as well as ease of 
mapping in the future when changes occur in the architecture, it 
is good practice to update the SysML model with the custom 
stereotypes, as seen in Fig. 7. 



 

Fig. 7. Radio Access Network SysML Block Definition Diagram 

Note that the “Shelter Structure” block and its value 
properties are not stereotyped. One key benefit of ontologies are 
their extensibility; they need not be complete in order to be 
useful. In fact, in many cases they are never complete as they are 
meant to describe domains of knowledge that are constantly 
expanding. In this example, certain terms related to the shelter 
were not captured in the developed ontology. However, instead 
of expanding the ontology, the team decided to forego tagging 
of the elements as they were not relevant to any cross-domain 
analysis planned. They are still part of the architecture, and 
should the need arise, they can still be tagged with ontologically 
relevant stereotypes, but the development team can invest in that 
expansion of the ontology when it is needed and does not need 
to describe everything in ontologies before any value can be 
extracted from the ontologies and the system aligned with them. 

V. DISCUSSION 

Limitations of this research come from its implementation as 
a conceptual model. Use of NLP to provides matching will vary 
considerably depending on the approach used to determine 
similarity. This could limit the effectiveness of the matching as 
well as the amount of information provided as part of the expert 
verification step. For example, there may be ways to provide 
scoring of how “close” an ontology class is to a SysML model 
term, and there may be an opportunity to provide the expert with 
the top 3 options instead of a single match. These details must 

be addressed in future research. However, the authors argue that 
different similarity metric approaches may perform better or 
worse depending on the domains being used and the modeling 
culture of the teams using the tool. Therefore, the black box 
approach seems best at this point to allow for experimentation 
and flexibility to fit individual context. 

The mentioned black box approach also enables flexibility 
as different methods and even technologies could be 
implemented in the process due to its modularity. If new and 
potentially better algorithms were to be found, they could be 
used instead of the ones presented in this paper, which provided 
future applicability of the presented concepts. 

While the lack of full artificial intelligence automating the 
entire matching process may be seen as a limitation, it is 
important to restate that augmented intelligence that accelerates 
performance has considerable value. The authors see this 
approach as a way to bridge the gap between theoretically 
possible applications using ontologies that do not easily scale 
and large-scale design and modeling efforts. To achieve this, full 
automation is not required; it is only required that a method be 
developed to accelerate the mapping process. In fact, expert 
verification can be used to further train the NLP models to 
perform better over time, and in the process experts will also 
learn to trust the matching process more, so a slower approach 
to the use of artificial intelligence as an aid may pay dividends 
in trust in the future. 

Furthermore, repeated and captured application of such 
processes will allow for the detection of patterns. Such patterns 
can then in turn be used through analysis to improve the 
functions underlying the presented approach. As such, machine 
learning technologies could also be considered moving forward. 
We argue that overall, while the conceptual nature of the 
presented work introduces and poses limitations, the removal 
and resolution of these constraints can be easily and flexibly 
addressed, which also directly connects the presented work and 
content to the future work and potential in the next section. 

VI. FUTURE WORK AND CONCLUSION 

As mentioned above, while the work at hand is theoretical as 
of the time of this writing, there are different directions that can  
be pursued. 

A. Future Work 

Future work can actualize the conceptual framework 
presented in this paper. All portions of this method except for 
the expert verification step have the capacity to be automated. 
Where the method is able to automatically pull term lists and run 
comparisons using an NLP similarity module to present for 
expert verification, it has the potential to accelerate the mapping 
process considerably.  

In addition, further research can be done on determining the 
optimal approach to achieve quality NLP results for matching. 
Ontologies can contain more than just a taxonomy of classes; 
they can also include many different axioms and relationships 
between classes beyond the taxonomical is_a relationship. This 
richer understanding of the classes could provide considerable 
performance improvement in the matching step between a 
requirement or SysML model term and an ontological term. For 



example, if an ontology specifies the different parts a shelter 
subsystem has and a SysML model lists those parts in a 
composite relationship with an oddly named parent block, it may 
be that the understanding of parthood from the ontology could 
give the matching algorithm enough confidence to present the 
parent block in the SysML model as a shelter subsystem. Further 
research into this approach as well as the many different NLP 
similarity and text matching approaches in this context is 
warranted. 

Finally, given the instance related data that will be included 
in many requirement statements (such as 9 dB gain in the 
example use case given), additional work mapping that instance 
data to the ontology instead of just the class information would 
be worthwhile. Research using the DEFII framework to perform 
verification tasks has been explored [3], and the ability to 
capture key constraint data contained in the requirement text 
could provide additional model based verification functionality 
in the future. 

B. Conclusion 

This paper blends two areas of research – Digital 
Engineering knowledge representation through the use of 
ontologies and Natural Language Processing, both in relation to 
requirements engineering and in similarity metrics. This blend 
of research enables an augmented intelligence approach to 
accelerate the mapping of different digital engineering artifacts, 
namely textual requirements and SysML system models, to 
ontologies. Such an alignment allows for an ontological 
understanding of the system, which has positive implications for 
interoperability between different disciplines and a more holistic 
view of a system under design to improve and streamline 
development processes. 
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