

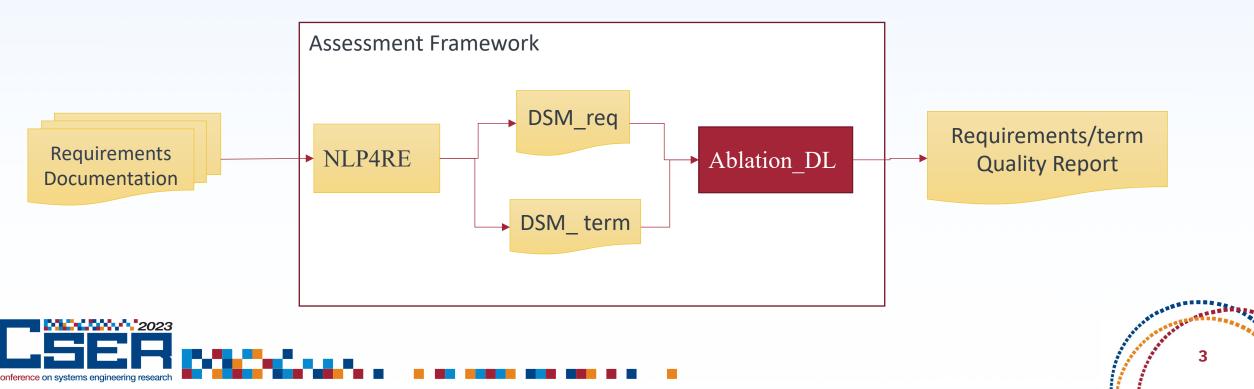
conference on systems engineering research March 16-17, 2023

A Framework on Early Decoupling Level Metric Assessment based on NLP4RE

Lu Xiao, Gengwu Zhao, Maximilian Vierlboeck, and Roshanak Nilchiani

Presenter: Gengwu Zhao

March 16, 2023


Modularity: Importance and Challenges

- System modularity is important. A modular system will:
 - Be easier to manage.
 - It can be developed in parallel.
 - Be easier to maintain and upgrade.
- However, modularity is challenge to achieve in real-life applications.
 - It is hard to measure and evaluate a modularity of complex systems
 - There is no method for early assessment of system modularity

Our Framework: Early Assessment of Modular Structure

- The framework is built upon existing techniques, NLP4RE, and the Decoupling Level (DL) metric.
- We proposed a new procedure called Ablation_DL based on the DL metric.

Natural Language Processing for Requirements Engineering (NLP4RE)

What is NLP4RE?

- Work of NLP4RE builds on prior research by Systems Engineering Research Center (SERC) [1,2].
- Natural language processing applications
- Identify dependencies between system requirements & key terms

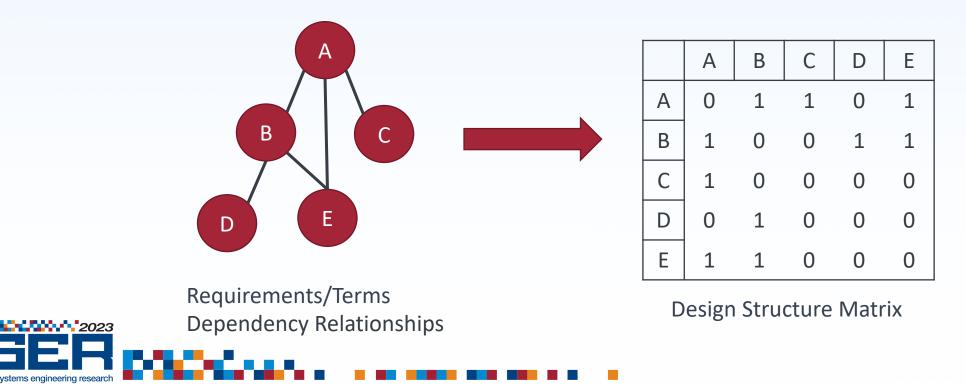
Input:

The natural language description of system requirements.

Output:

2023

Dependencies among system requirements and its key terms


[1] Vierlboeck, M., Dunbar, D., & Nilchiani, R. (2022, April). Natural Language Processing to Extract Contextual Structure from Requirements. In 2022 IEEE International Systems Conference (SysCon) (pp. 1-8). IEEE.

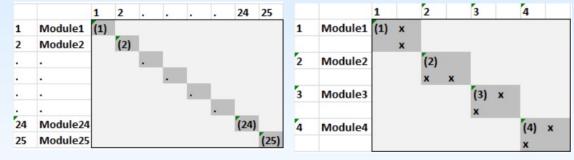
[2] Vierlboeck, M., Lipizzi, C., & Nilchiani, R. (2022). Natural Language in Requirements Engineering for Structure Inference--An Integrative Review. arXiv preprint arXiv:2202.05065.

Design Structure Matrix

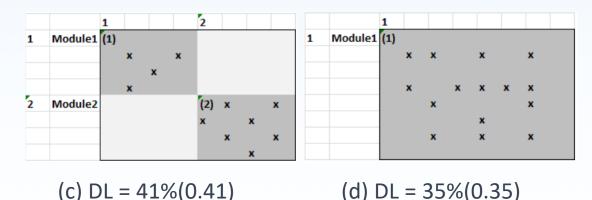
What is DSM?

A square matrix that represents the dependency relations between the design elements, which are requirements and terms in the context of our study.

Decoupling Level:


- Decoupling Level (DL) is a metric introduced by Mo et al. [1] to measure to what level a system is decoupled into small and manageable modules.
- The DL metric of a system can be calculated based on the DSM (Design Structure Matrix).
 - The DL value ranges from 0 to 1.
 - With higher DL values indicating a higher level of modularity in the system.
 - Empirical observation shows that a system is easier to maintain and modify when it has a higher DL value.

[1] Mo, R., Cai, Y., Kazman, R., Xiao, L., & Feng, Q. (2016). Decoupling Level: A New Metric for Architectural Maintenance Complexity. 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE), 499-510. doi: 10.1145/2884781.2884825.


Decoupling Level (DL) Interpretation Examples

- Here are some examples from Mo et al. [1] to illustrate the rationale of DL based on a DSM with 100 elements:
 - (a) 100 files are decoupled into 25 modules, each having 4 elements : DL = 100%(1.00)
 - (b) 100 files are decoupled into 4 modules, each having 25 elements : DL = 50%(0.50)
 - (c) 100 files are decoupled into 2 modules, each having 50 elements : DL = 41%(0.41)
 - (d) 100 files are decoupled into 1 module with 100 elements : DL = 35%(0.35)

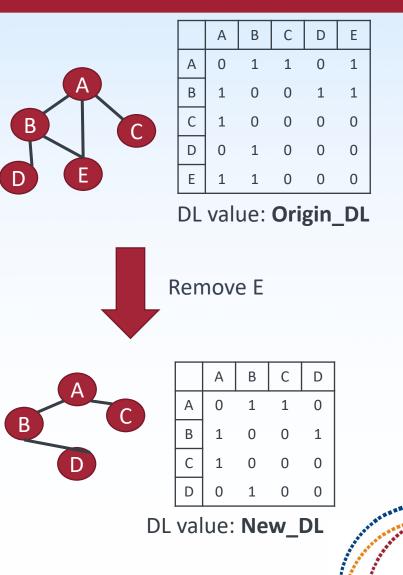
(a) DL = 100%(1.00)

(b) DL = 50%(0.50)

 [1] Mo, R., Cai, Y., Kazman, R., Xiao, L., & Feng, Q. (2016). Decoupling Level: A New Metric for Architectural Maintenance Complexity. 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE), 499-510. doi: 10.1145/2884781.2884825.

Ablation_DL Procedure

- What is the purpose?
 - To evaluate the impact of each single design element on the modularity of the entire system.


How does it work?

- 1. Input: Design Structure Matrix (DSM)
- 2. Calculate DL value, record as Origin_DL.
- 3. Remove one design element (e.g., E) from the DSM
- 4. Calculate new DL, record as New_DL
- 5. Calculate delta = Origin_DL New_DL.

In this example, **delta** represents the impact of the design element E on the modularity of the system's requirements.

- For each design element:
 - If **DL_delta** < 0: this element is a **coupler** since there is a **negative** impact on the modular structure (removing it will **increase** the decoupling level).
 - If **DL_delta** > 0: this element is a **decoupler** since there is a **positive** impact on the modular structure (removing it will **decrease** the decoupling level).

Case Study on Unmanned Aircraft System (UAS)

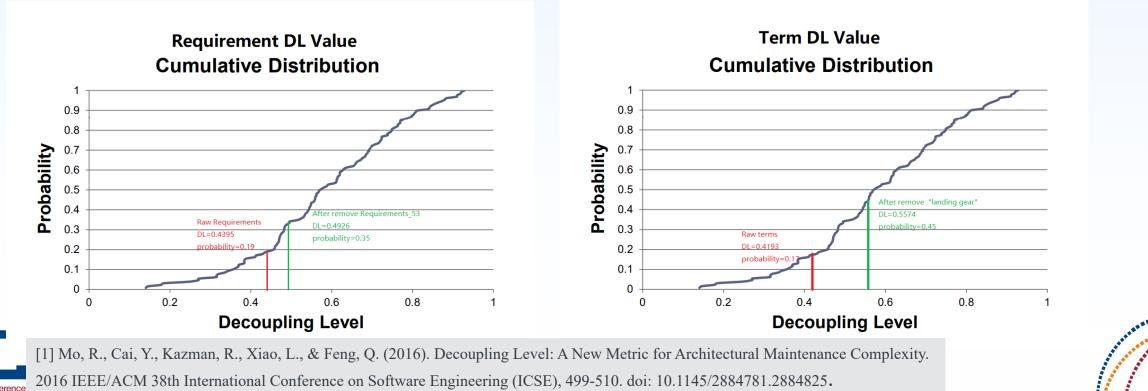
- We conducted a case study based on the Unmanned Aircraft System (UAS), a project from the Systems Engineering Research Center (SERC).
- We capture the DSMs of the UAS at two levels based on the NLP4RE:
 - a requirement-level DSM (70 requirements)
 - a term-level DSM (245 key terms).
- We applied our Ablation_DL procedure to quantitatively evaluate and rank the contributions of different design elements to the modular structure of the UAS system.

RQs in Case Study of the UAS

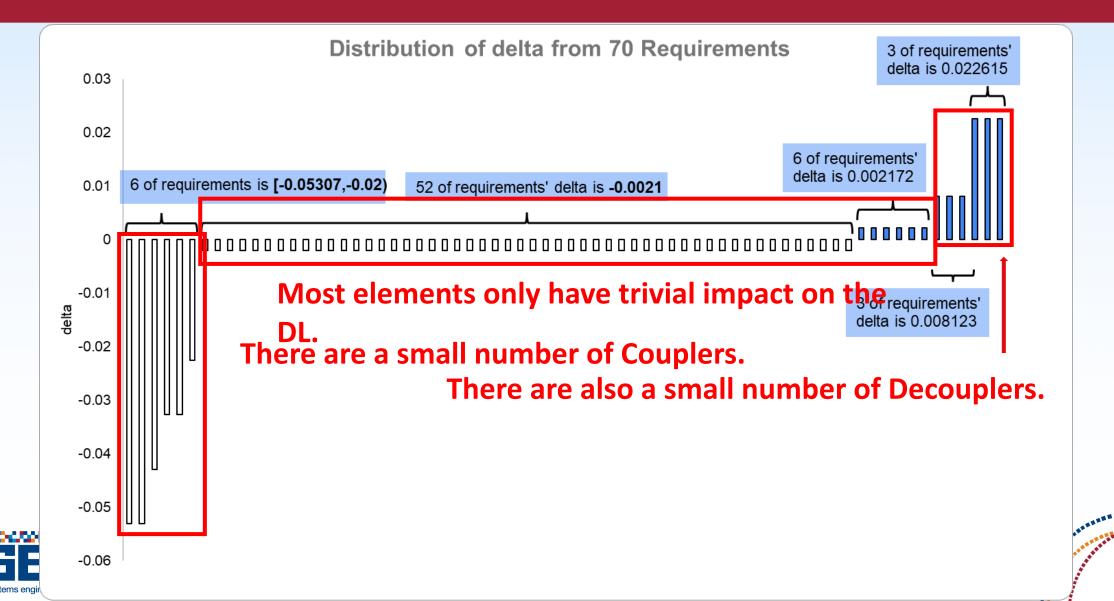
- RQ1: How is the DL metric of the UAS system compared to the "health chart" of DL metrics?
- RQ2: How do the different requirements in the UAS system contribute to the DL metric?
- RQ3: How do the different design terms in the UAS system contribute to the DL metric?
- RQ4: Why some requirements/terms have a decoupling/coupling effect to the UAS system?

10

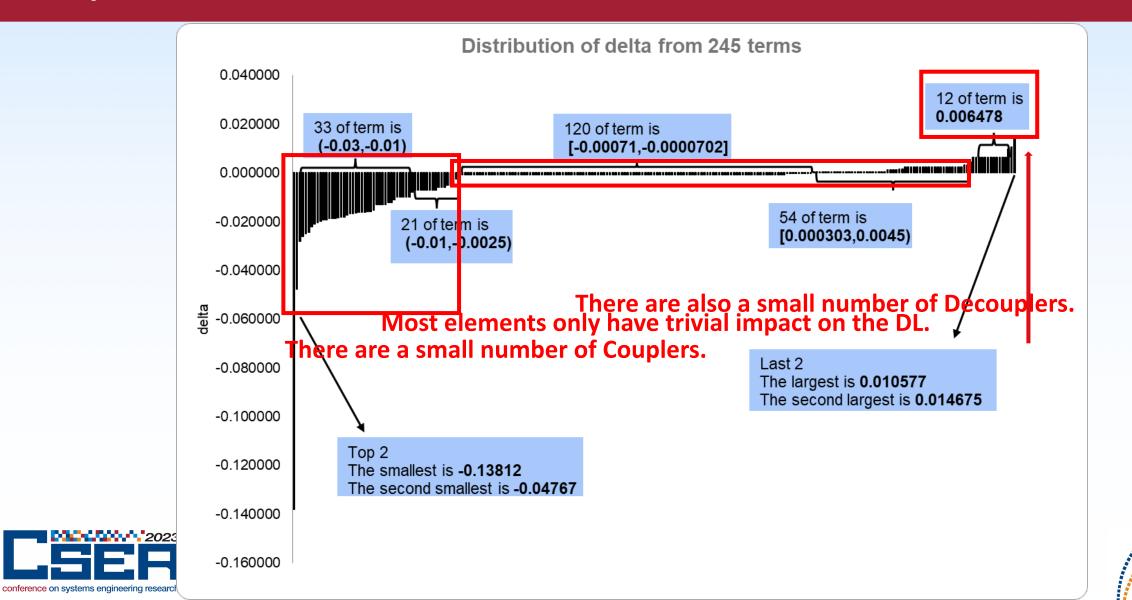
RQ1: How is the DL metric of the UAS system compared to the "health chart" of DL metrics


"Health chart": generated from the DL values of 129 software systems [1].

•UAS DL is at the 20 percentile, more coupling than 80% of software projects studied prior.


•Our ablation procedure identified requirement #53 as the most coupling requirement, removing it could improve the DL by over 5%.

11


•DSM_term shows consistent observations with DSM_req.

RQ2: How do the different requirements in the UAS system contribute to the DL metric?

RQ3: How do the different design terms in the UAS system contribute to the DL metric?

13

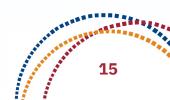
RQ4: Why some requirements/terms have a decoupling/coupling effect to the UAS system

RQ4.1:Findings of requirements decoupling/coupling effect

- The most coupling system requirements are
 - Composed of longer and more descriptive requirements.
 - Contain frequent and central terms, such as "landing gear"
 - Have high connectivity.
- The most decoupling system requirements are
 - Are typically shorter. For example, Requirement #61 only have two entities
 - Contain rare terms, such as "landing energy absorption"
 - Have low connectivity.

Top 3 Coupling Req	uirement	Top 3 Decoupling Requirement		
Requirement ID	Delta	Requirement ID	Delta	
# 53	-0.0531	# 61	0.02262	
# 7	-0.0531	# 62	0.02262	
# 52	-0.0429	# 25	0.02262	

Requirement level


RQ4: Why some requirements/terms have a decoupling/coupling effect to the UAS system

RQ4.2: Findings of terms decoupling/coupling effect

- The most coupling design terms
 - Have high connectivity.
- The most decoupling design terms
 - Typically composed of a compound noun
 - Have low connectivity.
- Have false positive connections in general terms like "time" and "inche", should be analyzed manually after the Ablation_DL procedure.

Term level						
Top 3 Coupling Term	p 3 Coupling Term		Top 3 Decoupling Term			
term name	Delta		term name	Delta		
landing gear	-0.13812		landing energy absorption	0.014675		
time	-0.04767		landing gear actuation	0.010577		
inche	-0.0282	15	single point non-structural failure	0.009714		

Future Work

- 1. Verify Scalability and Transferability on different systems.
- 2. Generate recommendations directly using our Framework.

conference on systems engineering research March 16-17, 2023

THANK YOU

Stevens Institute of Technology 1 Castle Point Terrace, Hoboken, NJ 07030

